953 resultados para Gas Vaccine Delivery
Resumo:
Background: The emerging field of microneedle-based minimally invasive patient monitoring and diagnosis is reviewed. Microneedle arrays consist of rows of micron-scale projections attached to a solid support. They have been widely investigated for transdermal drug and vaccine delivery applications since the late 1990s. However, researchers and clinicians have recently realized the great potential of microneedles for extraction of skin interstitial fluid and, less commonly, blood, for enhanced monitoring of patient health.
Methods: We reviewed the journal and patent literature, and summarized the findings and provided technical insights and critical analysis.
Results: We describe the basic concepts in detail and extensively review the work performed to date.
Conclusions: It is our view that microneedles will have an important role to play in clinical management of patients and will ultimately improve therapeutic outcomes for people worldwide.
Resumo:
Microneedles (MNs) are minimally invasive devices consisting of numerous micron-sized projections amassed on a baseplate, designed to enhance transdermal drug delivery. When applied to the skin, the needles puncture the outermost layer, the stratum corneum, forming aqueous conduits through which drugs can diffuse to the dermal microcirculation. With an average length of 50-900 μm, MNs are short enough to avoid stimulation of dermal nerves and do not induce bleeding, yet gain access to the skin's rich microcirculation for drug delivery. MNs have been extensively investigated for drug and vaccine delivery, demonstrating their efficacy at increasing the number of compounds amenable to delivery through the skin. This chapter discusses the materials and fabrication methods involved in MN production, alongside the different types of MN arrays and their delivery capabilities. The field has expanded to consider novel applications of MNs including minimally invasive patient monitoring, ocular delivery and enhanced administration of cosmeceuticals. Patient usage and effects on the skin are also considered in terms of safety, efficacy and acceptability. The next steps in MN development are to focus on the scale-up of manufacturing processes, a challenge considering the number of small-scale methods detailed in the literature. Regulatory guidance is awaited to direct this, alongside provision of clearer patient instruction for safe and effective use of MN devices. MNs have tremendous potential to yield real benefits for patients and industry and with continued research in the key areas highlighted, this will begin to be realised over the next number of years.
Resumo:
The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chitosan (alpha alpha-(1-4)-amino-2-deoxy-beta beta-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics, such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid structure, make this macromolecule ideal for an oral vaccine delivery system. We prepared reverse-phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method, there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded, leading to interfacial adsorption, followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd alpha alpha-helical content was quite stable, which led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98% avoided by the kosmotropic, PO
Resumo:
It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8(+) T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.
Resumo:
To circumvent the need to engineer pathogenic microorganisms as live vaccine-delivery vehicles, a system was developed which allowed for the stable expression of a wide range of protein antigens on the surface of Gram-positive commensal bacteria. The human oral commensal Streptococcus gordonii was engineered to surface express a 204-amino acid allergen from hornet venom (Ag5.2) as a fusion with the anchor region of the M6 protein of Streptococcus pyogenes. The immunogenicity of the M6-Ag5.2 fusion protein was assessed in mice inoculated orally and intranasally with a single dose of recombinant bacteria, resulting in the colonization of the oral/pharyngeal mucosa for 10-11 weeks. A significant increase of Ag5.2-specific IgA with relation to the total IgA was detected in saliva and lung lavages when compared with mice colonized with wild-type S. gordonii. A systemic IgG response to Ag5.2 was also induced after oral colonization. Thus, recombinant Gram-positive commensal bacteria may be a safe and effective way of inducing a local and systemic immune response.
Resumo:
This review discusses various issues regarding vaccines:what are they and how they work, safety aspects, the role of adjuvants and carriers in vaccination, synthetic peptides as immunogens, and new technologies for vaccine development and delivery including the identification of novel adjuvants for mucosal vaccine delivery. There has been a recent increase of interest, in the use of lipids and carbohydrates as adjuvants, and so a particular emphasis is placed on adjuvants derived from lipids or carbohydrates, or from both. Copyright (C) 2003 European Peptide Society and John Wiley Sons, Ltd.
Resumo:
The ann of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous Solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4degreesC. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period < hydrated in buffer/short equilibration period < hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not appear to significantly affect the occurrence and predominance of other structures present in the pseudo-binary systems containing Quil A. Pseudo-ternary phase diagrams of PC, Chol and Quil A are important to identify combinations which will produce different colloidal structures, particularly ISCOM matrices, by the method of lipid film hydration. Colloidal structures comprising these three components are readily prepared by hydration of dried lipid films and may have application in vaccine delivery where the functionality of ISCOMs has clearly been demonstrated. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
As human papillomavirus-like particles (HPV-VLP) represent a promising vaccine delivery vehicle, delineation of the interaction of VLP with professional APC should improve vaccine development. Differences in the capacity of VLP to signal dendritic cells (DC) and Langerhans cells (LC) have been demonstrated, and evidence has been presented for both clathrin-coated pits and proteoglycans (PG) in the uptake pathway of VLP into epithelial cells. Therefore, we compared HPV-VLP uptake mechanisms in human monocyte-derived DC and LC, and their ability to cross-present HPV VLP-associated antigen in the MHC class I pathway. DC and LC each took up virus-like particles (VLP). DC uptake of and signalling by VLP was inhibited by amiloride or cytochalasin D (CCD), but not by filipin treatment, and was blocked by several sulfated and non-sulfated polysaccharides and anti-CD16. In contrast, LC uptake was inhibited only by filipin, and VLP in LC were associated with caveolin, langerin, and CD1a. These data suggest fundamentally different routes of VLP uptake by DC and LC. Despite these differences, VLP taken up by DC and LC were each able to prime naive CD8(+) T cells and induce cytolytic effector T cells in vitro. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Five candidate promoters were examined to determine their utility in directing immunogenic levels of expression of the C fragment from tetanus toxin in attenuated S. enterica used as an oral vaccine in mice. Promoters derived from the genes encoding the stringent starvation protein (sspA) from E. coli and S. enterica, but not ansB derived promoters, expressed immunogenic levels of C fragment from multi-copy plasmids in attenuated S. enterica in vivo and, following oral immunization, induced high titre specific anti-tetanus toxoid serum antibodies. We also demonstrate that not only the choice of promoter, replicon and growth conditions but also how expression constructs are assembled in the chosen plasmid is critical for the successful development of plasmid-based antigen delivery systems using attenuated S. enterica. In addition, the S. enterica sspA promoter is able to elicit anti-tetanus toxoid antibodies in mice when the psspA-tetC expression cassette is integrated in single copy on the S. enterica chromosome.
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.