995 resultados para Galileo-GPS systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work analyses a real time orbit estimator using the raw navigation solution provided by GPS receivers. The estimation algorithm considers a Kalman filter with a rather simple orbit dynamic model and random walk modeling of the receiver clock bias and drift. Using the Topex/Poseidon satellite as test bed, characteristics of model truncation, sampling rates and degradation of the GPS receiver (Selective Availability) were analysed. Copyright © 2007 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integer carrier phase ambiguity resolution is the key to rapid and high-precision global navigation satellite system (GNSS) positioning and navigation. As important as the integer ambiguity estimation, it is the validation of the solution, because, even when one uses an optimal, or close to optimal, integer ambiguity estimator, unacceptable integer solution can still be obtained. This can happen, for example, when the data are degraded by multipath effects, which affect the real-valued float ambiguity solution, conducting to an incorrect integer (fixed) ambiguity solution. Thus, it is important to use a statistic test that has a correct theoretical and probabilistic base, which has became possible by using the Ratio Test Integer Aperture (RTIA) estimator. The properties and underlying concept of this statistic test are shortly described. An experiment was performed using data with and without multipath. Reflector objects were placed surrounding the receiver antenna aiming to cause multipath. A method based on multiresolution analysis by wavelet transform is used to reduce the multipath of the GPS double difference (DDs) observations. So, the objective of this paper is to compare the ambiguity resolution and validation using data from these two situations: data with multipath and with multipath reduced by wavelets. Additionally, the accuracy of the estimated coordinates is also assessed by comparing with the ground truth coordinates, which were estimated using data without multipath effects. The success and fail probabilities of the RTIA were, in general, coherent and showed the efficiency and the reliability of this statistic test. After multipath mitigation, ambiguity resolution becomes more reliable and the coordinates more precise. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the ionosphere on the signals of Global Navigation Satellite Systems (GNSS), such as the Global Positionig System (GPS) and the proposed European Galileo, is dependent on the ionospheric electron density, given by its Total Electron Content (TEC). Ionospheric time-varying density irregularities may cause scintillations, which are fluctuations in phase and amplitude of the signals. Scintillations occur more often at equatorial and high latitudes. They can degrade navigation and positioning accuracy and may cause loss of signal tracking, disrupting safety-critical applications, such as marine navigation and civil aviation. This paper addresses the results of initial research carried out on two fronts that are relevant to GNSS users if they are to counter ionospheric scintillations, i.e. forecasting and mitigating their effects. On the forecasting front, the dynamics of scintillation occurrence were analysed during the severe ionospheric storm that took place on the evening of 30 October 2003, using data from a network of GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers set up in Northern Europe. Previous results [1] indicated that GPS scintillations in that region can originate from ionospheric plasma structures from the American sector. In this paper we describe experiments that enabled confirmation of those findings. On the mitigation front we used the variance of the output error of the GPS receiver DLL (Delay Locked Loop) to modify the least squares stochastic model applied by an ordinary receiver to compute position. This error was modelled according to [2], as a function of the S4 amplitude scintillation index measured by the GISTM receivers. An improvement of up to 21% in relative positioning accuracy was achieved with this technnique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Galileo signals have great potential for pseudorange-based surveying and mapping in both optimal open-sky conditions and suboptimal under-canopy environments. This article reviews the main features of Galileo's E5 AItBO( and El (BOC signals, describes generation of realistic E5 and El pseudoranges with and without multipath sources, and presents anticipated horizontal positioning accuracy results, ranging from 4 centimeters (open-sky) to 14 centimeters (under-canopy) for E5/El.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observable GNSS (Global Navigation Satellite System) are affected by systematic errors due to free electrons present in the ionosphere. The error associated with the ionosphere depends on the Total Electron Content (TEC), which is influenced by several variables: solar cycle, season, local time, geomagnetic activity and geographic location. The GPS (Global Positioning System), GLONASS (Global Orbiting Navigation Satellite System) and Galileo dual frequency receivers allow the calculation of the error that affects the GNSS observables and the TEC. Using the rate of change of TEC (ROT - Rate of TEC) indices that indicate irregularities of the ionosphere can be determined, allowing inferences about its behavior. Currently it is possible to perform such studies in Brazil, due to the several Active Networks available, such as RBMC/RIBaC (Rede Brasileira de Monitoramento Contínuo/Rede INCRA de Bases Comunitárias) and GNSS Active Network of São Paulo. The proposed research aimed at estimating and analysing of indexes of irregularities of the ionosphere, besides supplying the geosciences of information about the behavior of the ionosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.