554 resultados para Gabor Wavelets
Resumo:
This paper introduces the Interlevel Product (ILP) which is a transform based upon the Dual-Tree Complex Wavelet. Coefficients of the ILP have complex values whose magnitudes indicate the amplitude of multilevel features, and whose phases indicate the nature of these features (e.g. ridges vs. edges). In particular, the phases of ILP coefficients are approximately invariant to small shifts in the original images. We accordingly introduce this transform as a solution to coarse scale template matching, where alignment concerns between decimation of a target and decimation of a larger search image can be mitigated, and computational efficiency can be maintained. Furthermore, template matching with ILP coefficients can provide several intuitive "near-matches" that may be of interest in image retrieval applications. © 2005 IEEE.
Resumo:
In this paper, we propose a watermarking algorithm in the complex wavelet domain. We then model watermarking as a communication process and show that the complex wavelet domain has relatively high capacity and is a potentially good domain for watermarking. Finally, a technique for registering geometrically distorted images, which is based on motion estimation in the wavelet domain, is described. The registration process can assist watermark detection in a watermarked image attacked by Stirmark, for example.
Resumo:
Recently we have developed a new form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This introduces limited redundancy (2 m:1 for m-dimensional signals) and allows the transform to provide approximate shift invariance and directionally selective filters (properties lacking in the traditional wavelet transform) while preserving the usual properties of perfect reconstruction and computational efficiency with good well-balanced frequency responses. In this paper we analyse why the new transform can be designed to be shift invariant, and describe how to estimate the accuracy of this approximation and design suitable filters to achieve this.
Resumo:
We present a matching framework to find robust correspondences between image features by considering the spatial information between them. To achieve this, we define spatial constraints on the relative orientation and change in scale between pairs of features. A pairwise similarity score, which measures the similarity of features based on these spatial constraints, is considered. The pairwise similarity scores for all pairs of candidate correspondences are then accumulated in a 2-D similarity space. Robust correspondences can be found by searching for clusters in the similarity space, since actual correspondences are expected to form clusters that satisfy similar spatial constraints in this space. As it is difficult to achieve reliable and consistent estimates of scale and orientation, an additional contribution is that these parameters do not need to be determined at the interest point detection stage, which differs from conventional methods. Polar matching of dual-tree complex wavelet transform features is used, since it fits naturally into the framework with the defined spatial constraints. Our tests show that the proposed framework is capable of producing robust correspondences with higher correspondence ratios and reasonable computational efficiency, compared to other well-known algorithms. © 1992-2012 IEEE.
Resumo:
着色和纹理合成是图形图像中的两类基本研究课题。前者需根据用户定义的彩色笔触信息,自动对黑白照片、电影或者漫画染上颜色;后者则需根据用户输入的样本纹理,经计算得出与样本纹理视觉上近似的结果纹理。这两类课题都有广泛的应用背景。如着色常常用于给经典的黑白电影或者照片自动上色,解决现在的染色工序中存在的需要大量人工交互的难题;而纹理合成常用于电影和电子游戏的地形地貌、织物、头发等等纹理的自动生成。 这两大类问题都需要分析纹理特征,并且依赖于分析结果的准确性。Gabor小波滤波器与人眼的视觉感受野相当吻合,用它来分析纹理得到的结果比较精确。鉴于此,本文把Gabor小波应用到了着色问题和纹理合成中。对于着色问题,本文用基于Gabor小波的特征向量重新定义邻居关系,然后用最优化方法迭代地对照片和卡通染色。相比以往的算法,本算法具有用户交互少、效果好、算法简单稳健的优点,并且算法允许用户逐步地添加色彩细节。对于纹理合成,本文用基于Gabor小波的特征向量来预计算K-Coherence候选集,提高了K-Coherence算法的准确性,从而改进了纹理合成的最终效果。 本文提出的算法是天然并行的,因而可利用GPU加速,做到实时计算。
Resumo:
为解决基于数字水印的无线多媒体消息版权管理系统对提取后水印标识的自动识别问题,在充分考虑多媒体消息在传播中可能遭受攻击的基础上,提出一种基于Gabor小波特征的标识确认方案.该方案利用这类小波函数确定的滤波器适合局部分析和多方向多尺度分析的特点,提取与水印版权标识结构信息相关的统计量,形成特征集向量,通过特征集的距离比较,在小尺寸水印质量退化情况下,实现了对水印标识的识别.分析和实验表明,该方案能够满足无线多媒体消息版权管理的需求,并且在文中分析的情况下,设备的自动识别精度可以达到95%以上,较好地支持了对无线多媒体消息的版权管理.
Resumo:
为了解决黑白图像自动染色的难题,提出了一种基于Gabor小波的渐进式着色算法。该算法首先使用Gabor小波对黑白图像的纹理特征进行分析,在此基础上,根据纹理特征差异重新定义像素的邻居关系,最后利用最优化方法对染色问题进行迭代求解。该算法主要的创新点是交互操作少,并允许用户逐步添加色彩细节。同时该算法还是天然并行的,能够利用图形处理器(GPU)进行实时计算。为该算法和当今流行的着色算法做了效果对比,并且进行了效率分析,实验结果表明了该算法的可用性和效率。
Resumo:
Discrete wavelets transform (DWT). was applied to noise on removal capillary electrophoresis-electrochemiluminescence (CE-ECL) electropherograms. Several typical wavelet transforms, including Haar, Daublets, Coiflets, and Symmlets, were evaluated. Four types of determining threshold methods, fixed form threshold, rigorous Stein's unbiased estimate of risk (rigorous SURE), heuristic SURE and minimax, combined with hard and soft thresholding methods were compared. The denoising study on synthetic signals showed that wave Symmlet 4 with a level decomposition of 5 and the thresholding method of heuristic SURE-hard provide the optimum denoising strategy. Using this strategy, the noise on CE-ECL electropherograms could be removed adequately. Compared with the Savitzky-Golay and Fourier transform denoising methods, DWT is an efficient method for noise removal with a better preservation of the shape of peaks.
Resumo:
A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.
Resumo:
Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.