992 resultados para GST-E2 protein
Resumo:
This study investigates the influence of 17β-estradiol (E2) on nitric oxide (NO) production in endothelial cell cultures and the effect of topical E2 on the survival of skin flap transplants in a rat model. Human umbilical vein endothelial cells were treated with three different E2 concentrations and nitrite (NO2) concentrations, as well as endothelial nitric oxide synthase (eNOS) protein expressions were analyzed. In vivo, random-pattern skin flaps were raised in female Wistar rats 14 days following ovariectomy and treated with placebo ointment (group 1), E2 as gel (group 2), and E2 via plaster (group 3). Flap perfusion, survival, and NO2 levels were measured on postoperative day 7. In vitro, E2 treatment increased NO2 concentration in cell supernatant and eNOS expression in cell lysates (p < 0.05). In vivo, E2 treated (gel and plaster groups) demonstrated significantly increased skin flap survival compared to the placebo group (p < 0.05). E2 plaster-treated animals exhibited higher NO2 blood levels than placebo (p < 0.05) paralleling the in vitro observations. E2 increases NO production in endothelial cells via eNOS activation. Topical E2 application can significantly increase survival of ischemically challenged skin flaps in a rat model and may augment wound healing in other ischemic situations via activation of NO production.
Resumo:
During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.
Resumo:
Sphingosylphosphorylcholine (SPC) is a bioactive lipid that binds to G protein-coupled-receptors and activates various signaling cascades. Here, we show that in renal mesangial cells, SPC not only activates various protein kinase cascades but also activates Smad proteins, which are classical members of the transforming growth factor-beta (TGFbeta) signaling pathway. Consequently, SPC is able to mimic TGFbeta-mediated cell responses, such as an anti-inflammatory and a profibrotic response. Interleukin-1beta-stimulated prostaglandin E(2) formation is dose-dependently suppressed by SPC, which is paralleled by reduced secretory phospholipase A(2) (sPLA(2)) protein expression and activity. This effect is due to a reduction of sPLA(2) mRNA expression caused by inhibited sPLA(2) promoter activity. Furthermore, SPC upregulates the profibrotic connective tissue growth factor (CTGF) protein and mRNA expression. Blocking TGFbeta signaling by a TGFbeta receptor kinase inhibitor causes an inhibition of SPC-stimulated Smad activation and reverses both the negative effect of SPC on sPLA(2) expression and the positive effect on CTGF expression. In summary, our data show that SPC, by mimicking TGFbeta, leads to a suppression of proinflammatory mediator production and stimulates a profibrotic cell response that is often the end point of an anti-inflammatory reaction. Thus, targeting SPC receptors may represent a novel therapeutic strategy to cope with inflammatory diseases.
Resumo:
Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.
Resumo:
Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.
Resumo:
PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.
Resumo:
Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.
Resumo:
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of 3′,5 ′-cyclic guanosine monophosphate (cGMP) from 5′ -guanosine triphosphate (GTP). In this thesis, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit η and the α1β1 isoform of sGC. Using the yeast-two-hybrid system, CCTη was found to interact with the N-terminal portion of β1 subunit of sGC. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast-two-hybrid system, CCTη was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTη and Sf9 lysate expressing sGC resulted in a 33% inhibition of sodium nitroprusside (SNP)-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTη had no effect on this activity. Furthermore, CCTη had no effect on the activity of αβCys105 sGC a constitutively active mutant that lacks a heme group. Of note is the fact that the full-length CCTη-expressing bacterial lysate inhibited the activity of sGC-expressing Sf9 lysate by 48% compared with GST alone. This indicates that the amino terminal 94 amino acids of CCTη are important to the inhibition of sGC activity. Lastly, a 45% inhibition of sGC activity by CCTη was seen in vivo in BE2 cells stably transfected with CCTη and treated with SNP. The fact that the inhibition of sGC was more pronounced with bacterial lysate expressing CCTη versus the purified CCTη implies that some factor in the bacterial lysate enhances the inhibitory effect of CCTη. Because the level of inhibition seen in bacterial lysate and in vivo experiments is similar, might imply that the factor that aids in CCTη effect on sGC is conserved. Together, these data suggest that CCTη is a novel type of sGC inhibitor that inhibits sGC by modifying the binding of NO to the heme group or the subsequent conformational changes induced by NO binding. ^
Resumo:
The antigen recognition site of antibodies is composed of residues contributed by the variable domains of the heavy and light chain subunits (VL and VH domains). VL domains can catalyze peptide bond hydrolysis independent of VH domains (Mei S et al. J Biol Chem. 1991 Aug 25;266(24):15571-4). VH domains can bind antigens noncovalently independent of V L domains (Ward et al. Nature. 1989 Oct 12;341(6242):544-6). This dissertation describe the specific hydrolysis of fusion proteins containing the hepatitis C virus coat protein E2 by recombinant hybrid Abs composed of the heavy chain of a high affinity anti-E2 IgG1 paired with light chains expressing promiscuous catalytic activity. The proteolytic activity was evident from electrophoresis assays using recombinant E2 substrates containing glutathione S-transferase (E2-GST) or FLAG peptide (E2-FLAG) tags. The proteolytic reaction proceeded more rapidly in the presence of the hybrid IgG1 compared to the unpaired light chain, consistent with accelerated peptide bond hydrolysis due to noncovalent VH domain-E2 recognition. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. Binding studies confirmed that the hybrid IgG retained detectable noncovalent E2 recognition capability, although at a level smaller than the wildtype anti-E2 IgG. Immunoblotting of E2-FLAG treated with the hybrid IgG suggested a scissile bond within E2 located ∼11 kD from the N terminus of the protein. E2-GST was hydrolyzed by the hybrid IgG at peptide bonds located in the GST tag. The differing cleavage pattern of E2-FLAG and E2-GST can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. This is the first proof-of principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit. ^
Resumo:
Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^
Resumo:
We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.
Resumo:
Posttranslational modifications such as ubiquitination and phosphorylation play an important role in the regulation of cellular protein function. Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the recently identified family of nuclear protein kinases that act as corepressors for homeodomain transcription factors. Here, we show that HIPK2 is regulated by a ubiquitin-like protein, SUMO-1. We demonstrate that HIPK2 localizes to nuclear speckles (dots) by means of a speckle-retention signal. This speckle-retention signal contains a domain that interacts with a mouse ubiquitin-like protein conjugating (E2) enzyme, mUBC9. In cultured cells, HIPK2 is covalently modified by SUMO-1, and the SUMO-1 modification of HIPK2 correlates with its localization to nuclear speckles (dots). Thus, our results provide firm evidence that the nuclear protein kinase HIPK2 can be covalently modified by SUMO-1, which directs its localization to nuclear speckles (dots).
Resumo:
A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the pGEX-2T expression vector to analyze the possible function of this LMM HSP under heat stress. It is known that E. coli does not normally produce class I LMM HSPs. We compared the survivability of E. coli XL1-Blue cells transformed with a recombinant plasmid containing a glutathione S-transferase (GST)–Oshsp16.9 fusion protein (pGST-FL cells) with the control E. coli cells transformed with the pGEX-2T vector (pGST cells) under heat-shock (HS) after isopropyl β-d-thiogalactopyranoside induction. The pGST-FL cells demonstrated thermotolerance at 47.5°C, a treatment that was lethal to the pGST cells. When the cell lysates from these two E. coli transformants were heated at 55°C, the amount of protein denatured in the pGST-FL cells was 50% less than that of the pGST cells. Similar results as pGST-FL cells were obtained in pGST-N78 cells (cells produced a fusion protein with only the N-terminal 78 aa in the Oshsp16.9 portion) but not in pGST-C108 cells (cells produced a fusion protein with C-terminal 108 aa in the Oshsp16.9 portion). The acquired thermotolerant pGST-FL cells synthesized three types of HSPs, including the 76-, 73-, and 64-kDa proteins according to their abundance at a lethal temperature of 47.5°C. This finding indicates that a plant class I LMM HSP, when effectively expressed in transformed prokaryotic cells that do not normally synthesize this class of LMM HSPs, may directly or indirectly increase thermotolerance.
Resumo:
DdLim, a multi-domain member of the cysteine-rich family of LIM domain proteins, was isolated from Dictyostelium cells where it localizes in lamellipodia and at sites of membrane ruffling. The transcription and expression of DdLim are developmentally regulated, and the timing of its increased association with the actin cytoskeleton coincides with the acquisition in starved cells of a motile, chemotactic behavior. Vegetative cells that overexpress DdLim contain large lamella and exhibit ruffling at the cortex. The high frequency of large, multinucleated mutant cells found in suspension culture suggests that excess DdLim interferes with cytokinesis. DdLim was also identified as a protein in a Dictyostelium cell lysate that associated indirectly, but in a guanosine triphosphate-dependent manner, with a GST-rac1 fusion protein. The data presented suggest that DdLim acts as an adapter protein at the cytoskeleton-membrane interface where it is involved in a receptor-mediated rac1-signaling pathway that leads to actin polymerization in lamellipodia and ultimately cell motility.
Resumo:
Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, biochemical, and cell biological characterization of a novel member of the synaptobrevin/VAMP family. The amino acid sequence of endobrevin has 32, 33, and 31% identity to those of synaptobrevin/VAMP-1, synaptobrevin/VAMP-2, and cellubrevin, respectively. Membrane fractionation studies demonstrate that endobrevin is enriched in membrane fractions that are also enriched in the asialoglycoprotein receptor. Indirect immunofluorescence microscopy establishes that endobrevin is primarily associated with the perinuclear vesicular structures of the early endocytic compartment. The preferential association of endobrevin with the early endosome was further established by electron microscopy (EM) immunogold labeling. In vitro binding assays show that endobrevin interacts with immobilized recombinant α-SNAP fused to glutathione S-transferase (GST). Our results highlight the general importance of members of the synaptobrevin/VAMP protein family in membrane traffic and provide new avenues for future functional and mechanistic studies of this protein as well as the endocytotic pathway.