942 resultados para GROWTH-HORMONE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of growth hormone therapy on energy expenditure, lipid profile, oxidative stress and cardiac energy metabolism in aging and obesity conditions. Life expectancy is increasing in world population and with it, the incidence of public health problems such as obesity and cardiac alterations. Because growth hormone (GH) concentration is referred to be decreased in aging conditions, a question must be addressed: what is the effect of GH on aging related adverse changes? To investigate the effects of GH on cardiac energy metabolism and its association with calorimetric parameters, lipid profile and oxidative stress in aged and obese rats, initially 32 male Wistar rats were divided into 2 groups (n = 16), C: given standard-chow and water; H: given hypercaloric-chow and receiving 30 % sucrose in its drinking water. After 45 days, both C and H groups were divided into 2 subgroups (n = 8), C + PL: standard-chow, water, and receiving saline subcutaneously; C + GH: standard-chow, water, and receiving 2 mg/kg/day rhGH subcutaneously; H + PL: hypercaloric-chow, 30 % sucrose, receiving saline subcutaneously; H + GH: hypercaloric-chow, 30 % sucrose, receiving rhGH subcutaneously. After 30 days, C + GH and H + PL rats had higher body mass index, Lee-index, body fat content, percent-adiposity, serum triacylglycerol, cardiac lipid-hydroperoxide, and triacylglycerol than C + PL. Energy-expenditure (RMR)/body weight, oxygen consumption and fat-oxidation were higher in H + GH than in H + PL. LDL-cholesterol was highest in H + GH rats, whereas cardiac pyruvate-dehydrogenase and phosphofrutokinase were higher in H + GH and H + PL rats than in C + PL. In conclusion, the present study brought new insights on aging and obesity, demonstrating for the first time that GH therapy was harmful in aged and obesity conditions, impairing calorimetric parameters and lipid profile. GH was disadvantageous in control old rats, having undesirable effects on triacylglycerol accumulation and cardiac oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of breed and of recombinant bovine somatotropin (rbST) treatment on growth hormone gene expression were studied in young bulls. The experiment was completely randomized in a [2 × 2]-factorial arrangement, using two levels of rbst (0 or 250 mg/animal/14 days), and two breed groups (Nelore and Simmental x Nelore crossbred). A CDNA encoding Bos indicus growth hormone was cloned and sequenced for use as a probe in Northern and dot blot analyses. Compared to the Bos taurus structural gene, the Bos indicus CDNA was found to begin 21 bases downstream from the transcription initiation site and had only two discrepancies (C to T at position 144-His and T to C at position 354-Phe), without changes in the polypeptide sequence. However, two amino acid substitutions were found for Bubalus spp., which belong to the same tribe. The rbst treatment did not change any of the characteristics evaluated (body and pituitary gland weights, growth hormone MRNA expression level). Crossbred animals had significantly higher body weight and heavier pituitaries than Nelore cattle. Pituitary weight was proportional to body weight in both breed groups. Growth hormone MRNA expression in the pituitary was similar (P>0.075) for both breed and hormonal treatment groups, but was 31.9% higher in the pure Nelore group, suggesting that growth hormone gene transcription regulation differs among these breeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3 +/- 1.5 ng/ml was observed compared with 1.04 +/- 1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5 +/- 9.7 ng/ml and a higher growth hormone release of 163 +/- 46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor type 1 (IGF1) is a mediator of growth hormone (GH) action, and therefore, IGF1 is a candidate gene for recombinant human GH (rhGH) pharmacogenetics. Lower serum IGF1 levels were found in adults homozygous for 19 cytosine-adenosine (CA) repeats in the IGF1 promoter. The aim of this study was to evaluate the influence of (CA)n IGF1 polymorphism, alone or in combination with GH receptor (GHR)-exon 3 and -202 A/C insulin-like growth factor binding protein-3 (IGFBP3) polymorphisms, on the growth response to rhGH therapy in GH-deficient (GHD) patients. Eighty-four severe GHD patients were genotyped for (CA) n IGF1, -202 A/C IGFBP3 and GHR-exon 3 polymorphisms. Multiple linear regressions were performed to estimate the effect of each genotype, after adjustment for other influential factors. We assessed the influence of genotypes on the first year growth velocity (1st y GV) (n = 84) and adult height standard deviation score (SDS) adjusted for target-height SDS (AH-TH SDS) after rhGH therapy (n = 37). Homozygosity for the IGF1 19CA repeat allele was negatively correlated with 1st y GV (P = 0.03) and AH-TH SDS (P = 0.002) in multiple linear regression analysis. In conjunction with clinical factors, IGF1 and IGFBP3 genotypes explain 29% of the 1st y GV variability, whereas IGF1 and GHR polymorphisms explain 59% of final height-target-height SDS variability. We conclude that homozygosity for IGF1 (CA) 19 allele is associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with severe GHD. Furthermore, this polymorphism exhibits a non-additive interaction with -202 A/C IGFBP3 genotype on the 1st y GV and with GHR-exon 3 genotype on adult height. The Pharmacogenomics Journal (2012) 12, 439-445; doi:10.1038/tpj.2011.13; published online 5 April 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormonereleasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormonereceptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de doctorado: Clínica Veterinaria e Investigación Terapéutica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context and Objective: Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. Design, Setting, and Patients: A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. Interventions and Results: AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. Conclusion: This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.