994 resultados para GROUNDWATER-MANAGEMENT
Resumo:
Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.
Resumo:
This study deals with investigating the groundwater quality for irrigation purpose, the vulnerability of the aquifer system to pollution and also the aquifer potential for sustainable water resources development in Kobo Valley development project. The groundwater quality is evaluated up on predicting the best possible distribution of hydrogeochemicals using geostatistical method and comparing them with the water quality guidelines given for the purpose of irrigation. The hydro geochemical parameters considered are SAR, EC, TDS, Cl-, Na+, Ca++, SO4 2- and HCO3 -. The spatial variability map reveals that these parameters falls under safe, moderate and severe or increasing problems. In order to present it clearly, the aggregated Water Quality Index (WQI) map is constructed using Weighted Arithmetic Mean method. It is found that Kobo-Gerbi sub basin is suffered from bad water quality for the irrigation purpose. Waja Golesha sub-basin has moderate and Hormat Golena is the better sub basin in terms of water quality. The groundwater vulnerability assessment of the study area is made using the GOD rating system. It is found that the whole area is experiencing moderate to high risk of vulnerability and it is a good warning for proper management of the resource. The high risks of vulnerability are noticed in Hormat Golena and Waja Golesha sub basins. The aquifer potential of the study area is obtained using weighted overlay analysis and 73.3% of the total area is a good site for future water well development. The rest 26.7% of the area is not considered as a good site for spotting groundwater wells. Most of this area fall under Kobo-Gerbi sub basin.
Resumo:
People in several parts of the world as well in India countenance an immense confront to meet the basic needs of water. The crisis is not due to lack of fresh water but its availability in adequate superiority. Environmental quality objectives should be developed in order to define acceptable loads on the terrain. There has been a number of initiatives in water quality monitoring but the next step towards improving its quality hasn’t taken the required pace. Today, there is a growing need to create awareness among citizens on the different technologies available for improving the water quality. Monitoring facilitate to apprehend how land and water use distress the quality of water and assist in estimating the extent of pollution. Once these issues are recognized, people can work towards local solutions to manage the indispensable resource effectively. Ground waters are extremely precious resources and in many countries together with India they represent the most important drinking water supply. They are generally microbiologically pure and, in most cases, they do not need any treatment. This communiqué is intended to act as a channel on the various paraphernalia and techniques accessible for groundwater quality assessment and suggesting the assured precautionary measures to embark on environment management. This learning is imperative considering that groundwater as the exclusive source of drinking water in the region which not makes situation alarming but also calls for immediate attention. The scope of this work is somewhat vast. Water quality in Ernakulam district is getting deteriorated due to the fast growth of urbanization. The closure of several water bodies due to land development and construction prevents infiltration of rainwater into the ground and hence recharge the aquifers. Most of the aquifers are getting polluted from the industrial effluents and chemicals and fertilizers used in agriculture. Such serious issues require proper monitoring of groundwater and steps are to be taken for remedial measures. This study helps in the total protection of the rich resource of groundwater and its sustainability. Socio-economic aspect covered could be used for conducting further individual case studies and to suggest remedial measures on a scientific basis. The specific study taken up for 15 sites can be further extended to the sources of pollution, especially industrial and agriculture
Resumo:
Water is the very essential livelihood for mankind. The United Nations suggest that each person needs 20-50 litres of water a day to ensure basic needs of drinking, cooking and cleaning. It was also endorsed by the Indian National Water Policy 2002, with the provision that adequate safe drinking water facilities should be provided to the entire population both in urban and in rural areas. About 1.42 million rural habitations in India are affected by chemical contamination. The provision of clean drinking water has been given priority in the Constitution of India, in Article 47 conferring the duty of providing clean drinking water and improving public health standards to the State. Excessive dependence of ground water results in depletion of ground water, water contamination and water borne diseases. Thus, access to safe and reliable water supply is one of the serious concerns in rural water supply programme. Though government takes certain serious steps in addressing the drinking water issues in rural areas, still there is a huge gap between demand and supply. The Draft National Water Policy 2012 also states that Water quality and quantity are interlinked and need to be managed in an integrated manner and with Stakeholder participation. Water Resources Management aims at optimizing the available natural water flows, including surface water and groundwater, to satisfy competing needs. The World Bank also emphasizes on managing water resources, strengthening institutions, identifying and implementing measures of improving water governance and increasing the efficiency of water use. Therefore stakeholders’ participation is viewed important in managing water resources at different levels and range. This paper attempts to reflect up on portray the drinking water issues in rural India, and highlights the significance of Integrated Water Resource Management as the significant part of Millennium Development Goals, and Stakeholders’ participation in water resources management.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The EU Project AquaTerra generates knowledge about the river-soil-sediment-groundwater system and delivers scientific information of value for river basin management. In this article, the use and ignorance of scientific knowledge in decision making is explored by a theoretical review. We elaborate on the 'two-communities theory', which explains the problems of the policy-science interface by relating and comparing the different cultures, contexts, and languages of researchers and policy makers. Within AquaTerra, the EUPOL subproject examines the policy-science interface with the aim of achieving a good connection between the scientific output of the project and EU policies. We have found two major barriers, namely language and resources, as well as two types of relevant relationships: those between different research communities and those between researchers and policy makers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper critically explores the politics that mediate the use of environmental science assessments as the basis of resource management policy. Drawing on recent literature in the political ecology tradition that has emphasised the politicised nature of the production and use of scientific knowledge in environmental management, the paper analyses a hydrological assessment in a small river basin in Chile, undertaken in response to concerns over the possible overexploitation of groundwater resources. The case study illustrates the limitations of an approach based predominantly on hydrogeological modelling to ascertain the effects of increased groundwater abstraction. In particular, it identifies the subjective ways in which the assessment was interpreted and used by the state water resources agency to underpin water allocation decisions in accordance with its own interests, and the role that a desocialised assessment played in reproducing unequal patterns of resource use and configuring uneven waterscapes. Nevertheless, as Chile’s ‘neoliberal’ political-economic framework privileges the role of science and technocracy, producing other forms of environmental knowledge to complement environmental science is likely to be contentious. In conclusion, the paper considers the potential of mobilising the concept of the hydrosocial cycle to further critically engage with environmental science.
Resumo:
We employ a moment-based approach to empirically analyse farmer’s decisions about adoption of tube-well technology under depleting groundwater resources using a farm level data from 200 farming households in the Punjab province, Pakistan. The results indicate that the higher the expected profit the greater the probability of adoption. Similarly, with increasing variance the probability of adopting tube-well increases significantly indicating that farmers choose to adopt tube-well technology in order to hedge against production risks. Statistical non-significant the third moment i.e., skewness indicates that farmer generally do not consider downside yield risk when decide to adopt tube-well technology whereas highly significant fourth moment (kurtosis) employ that probability of adoption decreases as a result of extreme events in profit distribution. In addition, we show that land tenureship and three other exogenous variables, i.e., extension services, access to different sources of information and off-farm income play a significant role in the adoption process.
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
Groundwater samples were analysed for Rn-222, Ra-226, and Ra-228 in Guarani aquifer spreading around I million kin 2 within four countries in South America, and it was found that their activity concentrations are lognormally distributed. Population-weighted average activity concentration for these radionuclides allowed to estimate a value: either slightly higher (0.13 mSv/year) than 0.1 mSv for the total effective dose or two times higher (0.21 mSv/year) than this limit, depending on the choice of the dose conversion factor. Such calculation adds useful information for the appropriate management of this transboundary aquifer that is socially and economically very important to about 15 million inhabitants living in Brazil, Argentina, Uruguay and Paraguay. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The problems caused by the residual effluents of wine distilleries for alcohol production are well known. The effluent effects in soil and groundwater are being researched in an area with sugar cane culture which receives, yearly, vinasse by dispersion. Samples are being collected from the soil, the groundwater and the existing creeks in the area. Four sub-areas are being monitored separately with a vinasse application of 300 m 3/ha year. Experimentation periods in each area have been 0, 5, 10 and 15 years. In the unsaturated zone, samples are being collected at depths of 25, 75 and 150 cm. The chemical analyses include macro and micro nutrients, organic matter and pH. Physical analyses give the soil water retention, hydraulic conductivity and soil particle distribution. These measurements permit the evaluation of nitrogen absorption and fertility changes of the soil. A tendency for the maintenance of soil fertility can be observed but with an elevation of nitrate concentration in groundwater.
Resumo:
The computational program called GIS_EM (Geographic Information System for Environmental Monitoring), a software devised to manage geographic information for monitoring soil, surface, and ground water, developed for use in the Health, Safety, and Environment Division of Paulinia Refinery is presented. This program enables registering and management of alphanumeric information pertaining to specific themes such as drilling performed for sample collection and for installation of monitoring wells, geophysical and other tests, results of chemical analyses of soil, surface, and groundwater, as well as reference values providing orientation for soil and water quality, such as EPA, Dutch List, etc. Management of such themes is performed by means of alphanumeric search tools, with specific filters and, in the case of spatial search, through the selection of spatial elements (themes) in map view. Documents existing in digital form, such as reports, photos, maps, may be registered and managed in the network environment. As the system centralizes information generated upon environmental investigations, it expedites access to and search of documents produced and stored in the network environment, minimizing search time and the need to file printed documents. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).
Resumo:
• Editorial remarks.-- Open discussion: Tariffs and subsidies: the current situation and trends in the region ; State-owned utilities and the flight from public law: challenges and trends ; Challenges and opportunities in access to water and sanitation in rural areas.-- Meetings: Proposals based on the Water and Environment Initiative consensuses.-- News of the Network: Peru’s Compensation Mechanisms for Ecosystem Services Act ; Ecuador’s Act on Water Resources and Water Use and Exploitation ; The environmental dynamics of groundwater in Mexico ; The Water Citizenship Programme in the province of Mendoza, Argentina.-- Internet and WWW News
Resumo:
Neste estudo, a qualidade da água foi verificada no manancial de abastecimento Água Preta, do município de Belém (PA). Houve seis amostragens em seis pontos de coleta e a concentração de coliformes foi verificada através da Técnica de Fermentação em Tubos Múltiplos para a determinação do NMP. Os isolados de Escherichia coli obtidos foram submetidos ao teste de sensibilidade aos seguintes antimicrobianos: cefoxitina, ampicilina, imipenem, gentamicina e amicacina. Além disso, foi investigado genes codificadores de fatores de virulência relacionados às variedades diarreiogênicas de E. coli. Não houve ocorrência de genes relacionados à patogenicidade, e as concentrações de coliformes termotolerantes apresentaram-se dentro dos padrões para mananciais de superfície usados para fins de abastecimento público. Contudo, as maiores concentrações de coliformes totais e termotolerantes foram observadas no ponto de coleta próximo à captação no rio Guamá e na área de maior adensamento populacional no entorno do lago. O teste de suscetibilidade dos isolados E. coli indicou uma alta porcentagem de resistência a ampicilina, a presença de seis perfis fenotípicos e a ocorrência de multiresistência. Assim, os resultados reforçam a necessidade do monitoramento sistemático deste manancial, visando a implementação de políticas de preservação e proteção dos mananciais utilizados para fins de abastecimento público, assim como a prevenção de doenças veiculadas pela água.
Resumo:
Groundwater has a strategic role in times of climate change mainly because aquifers can provide water for long periods, even during very long and severe drought. The reduction and/or changes on the precipitation pattern can diminish the recharge mainly in unconfined aquifer, causing available groundwater restriction. The expected impact of long-term climate changes on the Brazilian aquifers for 2050 will lead to a severe reduction in 70% of recharge in the Northeast region aquifers (comparing to 2010 values), varying from 30% to 70% in the North region. Data referring to the South and Southeast regions are more favorable, with an increase in the relative recharge values from 30% to 100%. Another expected impact is the increase in demand and the decrease in the surface water availability that will make the population turn to aquifers as its main source of water for public or private uses in many regions of the country. Thus, an integrated use of surface and groundwater must therefore be considered in the water use planning. The solution of water scarcity is based on three factors: society growth awareness, better knowledge on the characteristics of hydraulic and chemical aquifers and effective management actions.