997 resultados para GRASSLAND SOILS
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
The addition of lime into soils has been widely used to stabilize the expansive sub-grade soils when the road pavements are constructed on them. It is common practice to apply a half of the required lime amount and allow a certain time period for lime to react with soils (Amelioration period) before applying the rest of lime and compacting the sub-grade. The optimum amelioration period is essential to minimize the construction delay and to gain the higher strength. In this study, two different expansive soils procured from two different locations in the state of Queensland in Australia were first mixed with different lime contents. A soil mixed with a particular lime content was compacted at different amelioration periods (e.g.: 0, 6, 12, 18, 24 hrs) to obtain soil samples to measure the Unconfined Compressive Strength (UCS). The results suggested that for a given amelioration period, UCS increased with the increase in lime content. The optimum amelioration period could be within 14~17 hours for most of the lime contents in tested soils. This could suggest that the current 24-48 hour amelioration period specified by the Queensland Department of Transport and Main roads could be reduced.
Resumo:
Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.
Resumo:
Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration projects to fail. Achieving successful rehabilitation in an ASS affected area requires an understanding of the geochemical conditions that influence the establishment and growth of mangrove seedlings. This study evaluated the effect of tidal inundation on geochemical conditions on sub layer to better understand their impacts on the density, establishment, and growth of mangrove seedlings. This study also examined the geochemical conditions under which mangrove seedlings can establish naturally, and/or be replanted in abandoned aquaculture ponds. The study area was in an area of abandoned aquaculture ponds situated in the Mare District, adjacent to Bone Bay, South Sulawesi, Indonesia.The pH, pHfox, redox potential, organic content, water soluble sulfate, SKCl, SPOS, and grain size of the soil from the sediment core at + 10 - 15 cm depth near roots were measured using. Pyrite analysis were conducted for the top and sub sediments. The density, establishment, and the relative root growth of Rhizophoraceae were also determined. Free tidal inundation at abandoned pond sites improved the sediment quality. The high density, establishment, and growth of mangrove seedlings were characterized by freely drained areas with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. Higher density and growth also correlated to reduced environments. Sulfur species did not influence the density, establishment, and growth of the seedlings directly. The supply of propagules from the mangrove stands, or access from good waterways were also important for seedlings to establish naturally.
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
Water and ammonium retention by sandy soils may be low and result in leaching of applied fertiliser. To increase water and nutrient retention, zeolite is sometimes applied as a soil ameliorant for high value land uses including turf and horticulture. We have used a new modified kaolin material (MesoLite) as a soil amendment to test the efficiency of NH4+ retention and compared the results with natural zeolite. MesoLite is made by caustic reaction of kaolin at temperature between 80-95°C; although it has a moderate surface area, its cation exchange capacity is very high;(SA=13m2/g,CEC=500meq/100g). A 13cm tall sand column filled with ~450g of sandy soil homogeneously mixed with 1, 2, 4, and 8g of MesoLite or natural zeolite per 1kg of soil was prepared. After saturation with local bore water, concentrated ammonium sulfate solution was injected at the base. Then, bore water was passed from bottom to top through the column at amounts up to 6 pore volumes and at a constant flow rate of 10ml/min using a peristaltic pump. Concentrations of leached NH4+ were determined using an AutoAnalyser. The concentration of NH4+ leached from the column with 0.4% MesoLite was greatly (90%) reduced relative to unamended soil. Under these conditions NH4+ retention by the soil-MesoLite mixture was 11.5 times more efficient than the equivalent soil-natural zeolite mixture. Glasshouse experiments conducted in a separate study show that NH4+ adsorbed by MesoLite is available to plants.
Resumo:
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.
Resumo:
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
Resumo:
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.