928 resultados para GPS tracking data
Resumo:
A method of determining spectral parameters p (slope of the phase PSD) and T (phase PSD at 1 Hz) and hence tracking error variance in a GPS receiver PLL from just amplitude and phase scintillation indices and an estimated value of the Fresnel frequency has been previously presented. Here this method is validated using 50 Hz GPS phase and amplitude data from high latitude receivers in northern Norway and Svalbard. This has been done both using (1) a Fresnel frequency estimated using the amplitude PSD (in order to check the accuracy of the method) and (2) a constant assumed value of Fresnel frequency for the data set, convenient for the situation when contemporaneous phase PSDs are not available. Both of the spectral parameters (p, T) calculated using this method are in quite good agreement with those obtained by direct measurements of the phase spectrum as are tracking jitter variances determined for GPS receiver PLLs using these values. For the Svalbard data set, a significant difference in the scintillation level observed on the paths from different satellites received simultaneously was noted. Then, it is shown that the accuracy of relative GPS positioning can be improved by use of the tracking jitter variance in weighting the measurements from each satellite used in the positioning estimation. This has significant advantages for scintillation mitigation, particularly since the method can be accomplished utilizing only time domain measurements thus obviating the need for the phase PSDs in order to extract the spectral parameters required for tracking jitter determination.
Resumo:
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Resumo:
DOC Research Director Lettie Prell recently compiled the calendar year 2012 data for offender releases from prison to community supervision in Iowa. Analyzes such as these help the Iowa Corrections system in identifying where the most reentry resource need is; what offender programming is most in demand; and which culturally-sensitive supervision and culturally-specific programming is prescribed.
Resumo:
PURPOSE: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. METHODS: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. RESULTS: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25-30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. CONCLUSIONS: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.
Resumo:
In recent years, new analytical tools have allowed researchers to extract historical information contained in molecular data, which has fundamentally transformed our understanding of processes ruling biological invasions. However, the use of these new analytical tools has been largely restricted to studies of terrestrial organisms despite the growing recognition that the sea contains ecosystems that are amongst the most heavily affected by biological invasions, and that marine invasion histories are often remarkably complex. Here, we studied the routes of invasion and colonisation histories of an invasive marine invertebrate Microcosmus squamiger (Ascidiacea) using microsatellite loci, mitochondrial DNA sequence data and 11 worldwide populations. Discriminant analysis of principal components, clustering methods and approximate Bayesian computation (ABC) methods showed that the most likely source of the introduced populations was a single admixture event that involved populations from two genetically differentiated ancestral regions - the western and eastern coasts of Australia. The ABC analyses revealed that colonisation of the introduced range of M. squamiger consisted of a series of non-independent introductions along the coastlines of Africa, North America and Europe. Furthermore, we inferred that the sequence of colonisation across continents was in line with historical taxonomic records - first the Mediterranean Sea and South Africa from an unsampled ancestral population, followed by sequential introductions in California and, more recently, the NE Atlantic Ocean. We revealed the most likely invasion history for world populations of M. squamiger, which is broadly characterized by the presence of multiple ancestral sources and non-independent introductions within the introduced range. The results presented here illustrate the complexity of marine invasion routes and identify a cause-effect relationship between human-mediated transport and the success of widespread marine non-indigenous species, which benefit from stepping-stone invasions and admixture processes involving different sources for the spread and expansion of their range.
Resumo:
Snakes are thought as fear-relevant stimuli (biologically prepared to be associated with fear) which can lead to an enhanced attentional capture when compared fear-irrelevant stimuli. Inherent limitations related to the key-press behaviour might be bypassed with the measurement of eye movements, since they are more closely related to attentional processes than reaction times. An eye tracking technique was combined with the flicker paradigm in two studies. A sample of university students was gathered. In both studies, an instruction to detect changes between the pair of scenes was given. Attentional orienting for the changing element in the scene was analyzed, as well the role of fear of snakes as a moderator variable. The results for both studies revealed a significant shorter time to first fixation for snake stimuli when compared to control stimuli. A facilitating effect of fear of snakes was also found for snakes, presenting the highly fear participants a shorter a time to first fixation for snake stimuli when compared to low-feared participants. The results are in line with current research that supports the advantage of snakes to grab attention due their evo-biological significance.
Resumo:
Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.
Resumo:
There is growing interest in the ways in which the location of a person can be utilized by new applications and services. Recent advances in mobile technologies have meant that the technical capability to record and transmit location data for processing is appearing in off-the-shelf handsets. This opens possibilities to profile people based on the places they visit, people they associate with, or other aspects of their complex routines determined through persistent tracking. It is possible that services offering customized information based on the results of such behavioral profiling could become commonplace. However, it may not be immediately apparent to the user that a wealth of information about them, potentially unrelated to the service, can be revealed. Further issues occur if the user agreed, while subscribing to the service, for data to be passed to third parties where it may be used to their detriment. Here, we report in detail on a short case study tracking four people, in three European member states, persistently for six weeks using mobile handsets. The GPS locations of these people have been mined to reveal places of interest and to create simple profiles. The information drawn from the profiling activity ranges from intuitive through special cases to insightful. In this paper, these results and further extensions to the technology are considered in light of European legislation to assess the privacy implications of this emerging technology.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
Global Positioning System, or simply GPS, it is a radionavigation system developed by United States for military applications, but it becames very useful for civilian using. In the last decades Brazil has developed sounding rockets and today many projects to build micro and nanosatellites has appeared. This kind of vehicles named spacecrafts or high dynamic vehicles, can use GPS for its autonome location and trajectories controls. Despite of a huge number of GPS receivers available for civilian applications, they cannot used in high dynamic vehicles due environmental issues (vibrations, temperatures, etc.) or imposed dynamic working limits. Only a few nations have the technology to build GPS receivers for spacecrafts or high dynamic vehicles is available and they imposes rules who difficult the access to this receivers. This project intends to build a GPS receiver, to install them in a payload of a sounding rocket and data collecting to verify its correct operation when at the flight conditions. The inner software to this receiver was available in source code and it was tested in a software development platform named GPS Architect. Many organizations cooperated to support this project: AEB, UFRN, IAE, INPE e CLBI. After many phases: defining working conditions, choice and searching electronic, the making of the printed boards, assembling and assembling tests; the receiver was installed in a VS30 sounding rocket launched at Centro de Lançamento da Barreira do Inferno in Natal/RN. Despite of the fact the locations data from the receiver were collected only the first 70 seconds of flight, this data confirms the correct operation of the receiver by the comparison between its positioning data and the the trajectory data from CLBI s tracking radar named ADOUR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)