921 resultados para GPS tracking
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.
Resumo:
In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
The host specificity of the five published sewage-associated Bacteroides markers (i.e., HF183, BacHum, HuBac, BacH and Human-Bac) was evaluated in Southeast Queensland, Australia by testing fecal DNA samples (n = 186) from 11 animal species including human fecal samples collected via influent to a sewage treatment plant (STP). All human fecal samples (n = 50) were positive for all five markers indicating 100% sensitivity of these markers. The overall specificity of the HF183 markers to differentiate between humans and animals was 99%. The specificities of the BacHum and BacH markers were > 94%, suggesting that these markers are suitable for sewage pollution in environmental waters in Australia. The BacHum (i.e., 63% specificity) and Human-Bac (i.e., 79% specificity) markers performed poorly in distinguishing between the sources of human and animal fecal samples. It is recommended that the specificity of the sewage-associated markers must be rigorously tested prior to its application to identify the sources of fecal pollution in environmental waters.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Place branding has become a major focus of operations for destination marketing organizations (DMOs) striving for differentiation in cluttered markets. The topic of destination branding has only received attention in the tourism literature since the late 1990s, and there has been relatively little research reported in relations to analyzing destination brand effectiveness over time. This article reports an attempt to oprationalize the concept of consumer-based brand equity (CBBE) for an emerging destination over two points in time. The purpose of the project was to track the effectiveness of the brand in 2007 against benchmarks that were established in a 2003 student at the commencement of a new destination brand campaign. The key finding was there was no change in perceived performance for the destination across the brand's performance indicators and CBBE dimensions. Because of the common challenges faced by DMOs worldwide, it is suggested the CBBE hierarchy provides destination marketers with a practical tool for evaluation brand performance over time.
Resumo:
In the emerging literature related to destination branding, little has been reported about performance metrics. The focus of most research reported to date has been concerned with the development of destination brand identities and the implementation of campaigns (see for example, Crockett & Wood 1999, Hall 1999, May 2001, Morgan et al 2002). One area requiring increased attention is that of tracking the performance of destination brands over time. This is an important gap in the tourism literature, given: i) the increasing level of investment by destination marketing organisations (DMO) in branding since the 1990s, ii) the complex political nature of DMO brand decision-making and increasing accountability to stakeholders (see Pike, 2005), and iii) the long-term nature of repositioning a destination’s image in the market place (see Gartner & Hunt, 1987). Indeed, a number of researchers in various parts of the world have pointed to a lack of market research monitoring destination marketing objectives, such as in Australia (see Prosser et. al 2000, Carson, Beattie and Gove 2003), North America (Sheehan & Ritchie 1997, Masberg 1999), and Europe (Dolnicar & Schoesser 2003)...
Resumo:
Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.