110 resultados para GLYCATION
Resumo:
Background: Oxidative stress has been implicated in the development of peritoneal damage. The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) in a rat peritoneal infusion model. Methods: Eighteen male Wistar rats were divided in 3 groups: (i) control group; (ii) HDS group, receiving peritoneal dialysis solution (PDS); and (iii) HDS+NAC group, receiving PDS and oral NAC. Six weeks later they were evaluated for dialysate to plasma urea ratio (D/P), ratio of glucose concentration in peritoneal fluid (G1/G0), thiobarbituric acid reactive substances in plasma and urine and histology of peritoneal membrane. Results: The HDS+NAC group presented a lower increase in solute transport (D/P 0.51 +/- 0.1, and G1/GO 0.35 +/- 0.06) in comparison with the HDS group (D/P 0.67 +/- 0.1; p=0.03, and G1/G0 0.27 +/- 0.07; p=0.01). The HDS+NAC group showed lower thiobarbituric acid reactive substance concentrations compared with the HDS group. In the treated group, the peritoneal membrane presented lower thickness. Conclusions: Functional and histological peritoneal changes were significantly reduced by the treatment with NAC.
Resumo:
A new trend in cosmetic formulations is the use of biotechnological raw materials as the polysaccharides from Klebsiella pneumoniae, which are supposed to enhance cell renewal, improve skin hydration and micro-relief. Botanical extracts of Myrtus communis leaves contain different sugars, which may provide the same benefits. Thus, the objective of this study was to evaluate through objective and subjective analysis the immediate and long-term effects of cosmetic formulations containing polysaccharides biotechnologically-originated and / or the ones contained in Myrtus communis extracts. Three polysaccharide-based and placebo formulations were applied on the forearm skin of 40 volunteers. Skin hydration, transepidermal water loss (TEWL), viscoelasticity and skin micro-relief measurements were made before and 2 hours after a single application and after 15 and 30 day-periods of daily applications. Answers to a questionnaire about perceptions of formulation cosmetic features constituted the subjective analysis. All polysaccharide-based formulations enhanced skin hydration. Formulations with isolated or combined active substances improved skin barrier function as compared to placebo, in the short and long term studies. Formulations containing Myrtus communis extracts had the highest acceptance. Results suggest that daily use of formulations containing these substances is important for protection of the skin barrier function.
Resumo:
We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.
Resumo:
Context: Periodontitis is the most common lytic disease of bone and is recognized as a common complication of diabetes. Lipid peroxidation (LPO) is increased in diabetes and may be related to modulation of the inflammatory response. LPO levels in patients with diabetes and periodontal disease have not been evaluated. Objective: The aim of this study was to evaluate the levels of LPO and its correlation with periodontal status and inflammatory cytokines in type 2 diabetic and nondiabetic patients. Design and Setting: This is a cross-sectional study involving Brazilian patients recruited at the State University of Sao Paulo. Patients: The sample comprised 120 patients divided into four groups based upon diabetic and dyslipidemic status: poorly controlled diabetics with dyslipidemia, well-controlled diabetics with dyslipidemia, normoglycemic individuals with dyslipidemia, and healthy individuals. Main Outcome Measures: Blood analyses were carried out for fasting plasma glucose, glycated hemoglobin, and lipid profile. Periodontal examinations were performed, and gingival crevicular fluid was collected. LPO levels were evaluated by measuring oxidized low-density lipoprotein (ELISA) and malondialdehyde (HPLC). Cytokines were evaluated by the multiplex bead technique. Results: LPO evaluated by malondialdehyde in plasma and gingival crevicular fluid was significantly increased in diabetes groups. Significant correlations between LPO markers and periodontal parameters indicate a direct relationship between these levels and the severity of inflammation and secretion of inflammatory cytokines, particularly in diabetic patients. Conclusion: These findings suggest an important association for LPO with the severity of the local inflammatory response to bacteria and the susceptibility to periodontal disease in diabetic patients. (J Clin Endocrinol Metab 97: E1353-E1362, 2012)
Resumo:
The aim of this study was to evaluate extracellular matrix components in articular cartilage, ligaments and synovia in an experimental model of diabetes. Young Wistar rats were divided into a streptozotocin-induced (STZ; 35 mg/kg) diabetic group (DG; n=15) and a control group (CG; n=15). Weight, blood glucose and plasma anti-carboxymethyllysine were measured 70 days after STZ infusions. Knee joints, patellar ligaments, and lateral and medial collateral ligaments were isolated and stained with hematoxylineosin and Picrosirius. The total collagen content was determined by morphometry. Immunofluorescence was employed to evaluate types I, III, and V collagen in ligaments and synovial tissues and types II and XI collagen in cartilage. Results: Higher blood glucose levels and plasma anti-carboxymethyllysine were observed in DG rats when compared to those in CG rats. The final weight was significantly lower in the DG rats than in the CG rats. Histomorphometric evaluation depicted a small quantity of collagen fibers in ligaments and articular cartilage in DG rats, as well as increased collagen in synovial tissue. There was a decrease in cartilage proteoglycans in DG rats when compared with CG rats. Immunofluorescence staining revealed an increase of collagen III and V in ligaments, collagen XI in cartilage, and collagen I in synovial tissue of DG rats compared with CG rats. Conclusion: The ligaments, cartilage and synovia are highly affected following STZ-induced diabetes in rats, due the remodeling of collagen types in these tissues. This process may promote the degradation of the extracellular matrix, thus compromising joint function. Our data may help to better understand the pathogenesis of joint involvement related to diabetes.
Resumo:
Objective: We investigated the effect of advanced glycated albumin (AGE-albumin) on macrophage sensitivity to inflammation elicited by S100B calgranulin and lipopolysaccharide (LPS) and the mechanism by which HDL modulates this response. We also measured the influence of the culture medium, isolated from macrophages treated with AGE-albumin, on reverse cholesterol transport (RCT). Methods and results: Macrophages were incubated with control (C) or AGE-albumin in the presence or absence of HDL, followed by incubations with S100B or LPS. Also, culture medium obtained from cells treated with C- or AGE-albumin, following S100B or LPS stimulation was utilized to treat naive macrophages in order to evaluate cholesterol efflux and the expression of HDL receptors. In comparison with C-albumin, AGE-albumin, promoted a greater secretion of cytokines after stimulation with S100B or LPS. A greater amount of cytokines was also produced by macrophages treated with AGE-albumin even in the presence of HDL Cytokine-enriched medium, drawn from incubations with AGE-albumin and S100B or LPS impaired the cholesterol efflux mediated by apoA-I (23% and 37%, respectively), HDL2 (43% and 47%, respectively) and HDL3 (20% and 8.5%, respectively) and reduced ABCA-1 protein level (16% and 26%, respectively). Conclusions: AGE-albumin primes macrophages for an inflammatory response impairing the RCT. Moreover, AGE-albumin abrogates the anti-inflammatory role of HDL, which may aggravate the development of atherosclerosis in DM. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules. This adaptation occurs in a biphasic pattern: an early phase which develops after 1-2 h, and a late phase that develops after 12-24 h. While it is widely accepted that reactive oxygen species (ROS) are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. Methylglyoxal, a metabolic compound formed mainly from the glycolytic intermediate glyceraldehyde-3-phosphate., is a precursor of advanced glycation end product (AGEs) .It is more reactive than glucose and shows a stronger ability to cross-link with protein amino groups to form AGEs. Methylglyoxal induced cytotoxicity may be at least partially responsible for cardiovascular and Alzheimer diseases. Methylglyoxal omeostasis is controlled by the glyoxalase system that consists of two enzyme, glyoxalase 1 (GLO1) and glyoxalase 2. In a recent study it was demonstrated that the transcriptional levels of GLO1 are controlled by NF-E2-related factor 2 (Nrf2). The isothiocyanate sulforaphane, derived from the hydrolysis of glucoraphanin abundantly present in broccoli, represents one of the most potent inducers of phase II enzymes through the Keap1–Nrf2 pathway. The aim of this thesis was evaluated molecular mechanisms in cardio- and neuroprotection and the possibility of modulation by nutraceutical phytocomponents This thesis show to one side that the protection induced by H2O2 is mediated by detoxifying and antioxidant phase II enzymes induction, regulated, not only by transcriptional factor Nrf2, but also by Nrf1; on the other side our data represent an innovative result because for the first time it was demonstrated the possibility of inducing GLO1 by SF supplementation.
Resumo:
The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNAmediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of soluble RAGE in the mouse lung. Our findings suggest that pharmacological stimulation of RAGE shedding might open alternative treatment strategies for Alzheimers disease and diabetes-induced inflammation.
Resumo:
Diabetic neuropathy (DN) is an important complication contributing to high morbidity and morbidity of diabetic subjects. Primarily, interventional strategies aim at normalization hyperglycemia (to prevent development and progression of DN), at early diagnosis and at prevention of ulcers and amputations. In addition, an increasing number of pharmaceutical agents is used to symptomatically treat dysesthesia and pain associated with DN. During recent years attempts have been made to pharmacologically treat DN by acting on underlying patho-physiological mechanisms (e.g. sorbitol pathway, non-enzymatic glycation, microvascular abnormalities). So far, these strategies have not changed clinical praxis. This review will give a systematic overview of DN and summarize current pharmacological options to symptomatically treat dysesthesia and pain associated with DN.
Resumo:
Irreversible, nonenzymatic glycation of the haemoglobin A beta chain leads to the formation of haemoglobin A1c (HbA1c), a stable minor haemoglobin component with enhanced electrophoretic mobility. The rate of formation of HbA1c is directly proportional to the ambient glucose concentration. HbA1c is commonly used to assess long-term blood glucose control in patients with diabetes mellitus, because the HbA1c value has been shown to predict the risk for the development of many of the chronic complications in diabetes. There are currently four principal glycohaemoglobin assay techniques (ion-exchange chromatography, electrophoresis, affinity chromatography and immunoassays) and over 20 methods that measure different glycated products. The ranges indicating good and poor glycaemic control can vary markedly between different assays. At the moment values differ between methodologies and even between different laboratories using the same methodology. Optimal use of HbA1c testing requires standardisation. There is progress towards international standardisation and improved precision of HbA1c which will lead to all assays reporting results in a standardised way. Clinicians ordering HbA1c testing for their patients should be aware of the type of assay method used, the reference interval, potential assay interferences (e.g. haemoglobinopathies, chronic alcohol ingestion, carbamylation products in uraemia) and assay performance. And they should know that a variety of factors have been shown to directly influence HbA1c values, e.g. iron deficiency anaemia, chronic renal failure and shortened red blood cell life span.
Resumo:
The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.
Resumo:
The expression and function of psoriasin in the brain have been insufficiently characterized. Here, we show the induction of psoriasin expression in the central nervous system (CNS) after bacterial and viral stimulation. We used a pneumococcal meningitis in vivo model that revealed S100A15 expression in astrocytes and meningeal cells. These results were confirmed by a cell-based in vivo assay using primary rat glial and meningeal cell cultures. We investigated psoriasin expression in glial and meningeal cells using polyinosinic-polycytidylic acid, a synthetic analog of double-stranded RNA that mimics viral infection. Furthermore, previous results showed that antimicrobial peptides have not only bactericidal but also immunomodulatory functions. To test this statement, we used recombinant psoriasin as a stimulus. Glial and meningeal cells were treated with recombinant psoriasin at concentrations from 25 to 500 ng/ml. Treated microglia and meningeal cells showed phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (ERK1/2) signal transduction pathway. We demonstrated that this activation of ERK depends on RAGE, the receptor for advanced glycation end products. Furthermore, microglia cells treated with recombinant psoriasin change their phenotype to an enlarged shape. In conclusion, our results indicate an occurrence of psoriasin in the brain. An involvement of psoriasin as an antimicrobial protein that modulates the innate immune system after bacterial or viral stimulation is possible.
Resumo:
Activated terminal complement proteins C5b to C9 form the membrane attack complex (MAC) pore. Insertion of the MAC into endothelial cell membranes causes the release of growth factors that stimulate tissue growth and proliferation. The complement regulatory membrane protein CD59 restricts MAC formation. Because increased cell proliferation characterizes the major chronic vascular complications of human diabetes and because increased glucose levels in diabetes cause protein glycation and impairment of protein function, we investigated whether glycation could inhibit CD59. Glycation-inactivation of CD59 would cause increased MAC deposition and MAC-stimulated cell proliferation. Here, we report that (i) human CD59 is glycated in vivo, (ii) glycated human CD59 loses its MAC-inhibitory function, and (iii) inactivation of CD59 increases MAC-induced growth factor release from endothelial cells. We demonstrate by site-directed mutagenesis that residues K41 and H44 form a preferential glycation motif in human CD59. The presence of this glycation motif in human CD59, but not in CD59 of other species, may help explain the distinct propensity of humans to develop vascular proliferative complications of diabetes.
Resumo:
Long-term aging of potato (Solanum tuberosum) seed-tubers resulted in a loss of patatin (40 kD) and a cysteine-proteinase inhibitor, potato multicystatin (PMC), as well as an increase in the activities of 84-, 95-, and 125-kD proteinases. Highly active, additional proteinases (75, 90, and 100 kD) appeared in the oldest tubers. Over 90% of the total proteolytic activity in aged tubers was sensitive to trans-epoxysuccinyl-l-leucylamido (4-guanidino) butane or leupeptin, whereas pepstatin was the most effective inhibitor of proteinases in young tubers. Proteinases in aged tubers were also inhibited by crude extracts or purified PMC from young tubers, suggesting that the loss of PMC was responsible for the age-induced increase in proteinase activity. Nonenzymatic oxidation, glycation, and deamidation of proteins were enhanced by aging. Aged tubers developed “daughter” tubers that contained 3-fold more protein than “mother” tubers, with a polypeptide profile consistent with that of young tubers. Although PMC and patatin were absent from the older mother tubers, both proteins were expressed in the daughter tubers, indicating that aging did not compromise the efficacy of genes encoding PMC and patatin. Unlike the mother tubers, proteinase activity in daughter tubers was undetectable. Our results indicate that tuber aging nonenzymatically modifies proteins, which enhances their susceptibility to breakdown; we also identify a role for PMC in regulating protein turnover in potato tubers.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014