946 resultados para GLUON PLASMA
Resumo:
We simulate top-energy Au + Au collisions using ideal hydrodynamics in order to make the first comparison to the complete set of midrapidity flow measurements made by the PHENIX Collaboration. A simultaneous calculation of nu(2), nu(3), nu(4), and the first event-by-event calculation of quadrangular flow defined with respect to the nu(2) event plane (nu(4){Psi(2)}) gives good agreement with measured values, including the dependence on both transverse momentum and centrality. This provides confirmation that the collision system is indeed well described as a quark-gluon plasma with an extremely small viscosity and that correlations are dominantly generated from collective effects. In addition, we present a prediction for nu(5).
Resumo:
The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).
Resumo:
The self-consistency of a thermodynamical theory for hadronic systems based on the non-extensive statistics is investigated. We show that it is possible to obtain a self-consistent theory according to the asymptotic bootstrap principle if the mass spectrum and the energy density increase q-exponentially. A direct consequence is the existence of a limiting effective temperature for the hadronic system. We show that this result is in agreement with experiments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Time-Of-Flight (TOF) detector of ALICE is designed to identify charged particles produced in Pb--Pb collisions at the LHC to address the physics of strongly-interacting matter and the Quark-Gluon Plasma (QGP). The detector is based on the Multigap Resistive Plate Chamber (MRPC) technology which guarantees the excellent performance required for a large time-of-flight array. The construction and installation of the apparatus in the experimental site have been completed and the detector is presently fully operative. All the steps which led to the construction of the TOF detector were strictly followed by a set of quality assurance procedures to enable high and uniform performance and eventually the detector has been commissioned with cosmic rays. This work aims at giving a detailed overview of the ALICE TOF detector, also focusing on the tests performed during the construction phase. The first data-taking experience and the first results obtained with cosmic rays during the commissioning phase are presented as well and allow to confirm the readiness state of the TOF detector for LHC collisions.
Resumo:
The ALICE experiment at the LHC has been designed to cope with the experimental conditions and observables of a Quark Gluon Plasma reaction. One of the main assets of the ALICE experiment with respect to the other LHC experiments is the particle identification. The large Time-Of-Flight (TOF) detector is the main particle identification detector of the ALICE experiment. The overall time resolution, better that 80 ps, allows the particle identification over a large momentum range (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p). The TOF makes use of the Multi-gap Resistive Plate Chamber (MRPC), a detector with high efficiency, fast response and intrinsic time resoltion better than 40 ps. The TOF detector embeds a highly-segmented trigger system that exploits the fast rise time and the relatively low noise of the MRPC strips, in order to identify several event topologies. This work aims to provide detailed description of the TOF trigger system. The results achieved in the 2009 cosmic-ray run at CERN are presented to show the performances and readiness of TOF trigger system. The proposed trigger configuration for the proton-proton and Pb-Pb beams are detailed as well with estimates of the efficiencies and purity samples.
Resumo:
The analysis of the K(892)*0 resonance production in Pb–Pb collisions at √sNN = 2.76 TeV with the ALICE detector at the LHC is presented. The analysis is motivated by the interest in the measurement of short-lived resonances production that can provide insights on the properties of the medium produced in heavy-ion collisions both during its partonic (Quark-Gluon Plasma) and hadronic phase. This particular analysis exploits particle identification of the ALICE Time-Of-Flight detector. The ALICE experiment is presented, with focus on the performance of the Time-Of-Flight system. The aspects of calibration and data quality controls are discussed in detail, while illustrating the excellent and very stable performance of the system in different collision environments at the LHC. A full analysis of the K*0 resonance production is presented: from the resonance reconstruction to the determination of the efficiency and the systematic uncertainty. The results show that the analysis strategy discussed is a valid tool to measure the K∗0 up to intermediate momenta. Preliminary results on K*0 resonance production at the LHC are presented and confirmed to be a powerful tool to study the physics of ultra-relativistic heavy-ion collisions.
Measurement of k(892)*0 resonance production in p-pb collisions with the alice experiment at the lhc
Resumo:
̀ qui presentato lo studio della produzione della risonanza K∗0 in collisioni p-Pb con l’esperimento ALICE presso LHC. L’elaborato si compone di una introduzione sulla natura del fenomeno studiato: la formazione del Quark Gluon Plasma (QGP), uno stato della materia fortemente interagente ad alte temperatura e densità d’energia. Vengono descritte le segnature studiate ai fini di identificare il suddetto fenomeno, riportando come esempio concreto i risultati sperimentali. Successivamente l’acceleratore di particelle, LHC, e l’esperimento, ALICE, vengono brevemente introdotti. Più in dettaglio ven- gono descritti i rivelatori di ALICE effettivamente usati per l’analisi, a cui sono dedicate sezioni approfondite. Viene infine introdotta l’analisi e le sue motivazioni. Il metodo utilizzato e lo studio degli errori da associare alla misura sono illustrati in ogni loro passo e supportati dai risultati ottenuti. La discussione finale dei risultati include il confronto con i risultati preceden- temente ottenuti da ALICE in collisioni pp e Pb-Pb e da altri esperimenti.
Resumo:
Questa tesi si propone di investigare l'origine di effetti non gaussiani nella distribuzione del segnale del rivelatore Time of Flight (TOF) dell'esperimento A Large Ion Collider Experiment (ALICE). Con la presa dati iniziata nel 2009 si è infatti osservata un'asimmetria nel segnale la cui origine è ancora oggetto di studio. L'analisi svolta mostra come essa sia dovuta a motivi strumentali piuttosto che fenomenologici e permette quindi di correggere in parte questa anomalia migliorando la risoluzione del rivelatore. ALICE è uno dei quattro esperimenti allestiti lungo l'anello del LHC e ha come obiettivo principale verificare l'esistenza di prove sperimentali che confermino l'esistenza di un nuovo stadio della materia, il cosiddetto Quark Gluon Plasma (QGP). Secondo la Cromodinamica Quantistica (QCD), la teoria che descrive l'interazione forte, caratteristica fondamentale di quark e gluoni è il loro confinamento all'interno di adroni. Studi recenti nell'ambito della QCD non-perturbativa hanno tuttavia dimostrato che in condizioni estreme di densità di materia adronica e temperatura sarebbe possibile un'inversione di tendenza nell'andamento della costante di accoppiamento forte. Le condizioni necessarie alla formazione del QGP sono ben riproducibili nelle collisioni ad energie ultrarelativistiche tra ioni pesanti, come quelle che sono state prodotte a LHC negli ultimi due anni, fra ioni di piombo con energie del centro di massa pari a 2.76 TeV per coppia di nucleoni. L'esperimento ALICE si propone di studiarne i prodotti e poiché la molteplicità di particelle che si generano nell'urto e considerevole, e necessario un sistema di rivelazione che permetta l'identificazione di particelle cariche su un grande angolo solido e in un ampio intervallo di impulsi. Il TOF, utilizzando un particolare rivelatore a gas detto Multigap Resistive Plate Chamber (MRPC), svolge brillantemente questo compito permettendo di raggiungere una risoluzione temporale inferiore ai 100 ps.
Resumo:
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.
Resumo:
The main purpose of ultrarelativistic heavy-ion collisions is the investigation of the QGP. The ALICE experiment situated at the CERN has been specifically designed to study heavy-ion collisions for centre-of-mass energies up to 5.5 per nucleon pair. Extended particle identification capability is one of the main characteristics of the ALICE experiment. In the intermediate momentum region (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p), charged particles are identified in the ALICE experiment by the Time of Flight (TOF) detector. The ALICE-TOF system is a large-area detector based on the use of Multi-gap Resistive Plate Chamber (MRPC) built with high efficiency, fast response and intrinsic time resolution better than 40 ps. This thesis work, developed with the ALICE-TOF Bologna group, is part of the efforts carried out to adapt the read-out of the detector to the new requirements after the LHC Long Shutdown 2. Tests on the feasibility of a new read-out scheme for the TOF detector have been performed. In fact, the achievement of a continuous read-out also for the TOF detector would not be affordable if one considers the replacement of the TRM cards both for hardware and budget reasons. Actually, the read-out of the TOF is limited at 250 kHz i.e. it would be able to collect up to just a fourth of the maximum collision rate potentially achievable for pp interactions. In this Master’s degree thesis work, I discuss a different read-out system for the ALICE-TOF detector that allows to register all the hits at the interaction rate of 1 MHz foreseen for pp interactions after the 2020, by using the electronics currently available. Such solution would allow the ALICE-TOF detector to collect all the hits generated by pp collisions at 1 MHz interaction rate, which corresponds to an amount four times larger than that initially expected at such frequencies with the triggered read-out system operated at 250 kHz for LHC Run 3. The obtained results confirm that the proposed read-out scheme is a viable option for the ALICE TOF detector. The results also highlighted that it will be advantageous if the ALICE-TOF group also implement an online monitoring system of noisy channels to allow their deactivation in real time.
Resumo:
La fisica delle collisioni ad alte energie è, ad oggi, uno dei campi di ricerca più interessante per la verifica di modelli teorici che spieghino la nascita e la formazione dell'universo in cui viviamo. In quest'ottica lavorano esperimenti presso i più importanti acceleratori di particelle: tra questi anche l'esperimento ALICE, presso il Large Hadron Collider LHC del CERN di Ginevra. Il suo scopo principale è quello di verificare e ampliare l'insieme delle prove sperimentali alla base sull'esistenza di un nuovo stato della materia: il Quark Gluon Plasma. La presenza della transizione di fase della materia adronica ordinaria a QGP era stata teorizzata da diversi studi termodinamici e da calcoli di QCD su reticolo: in particolare si prevedeva l'esistenza di uno stato della materia in cui i quark sono deconfinati. Il QGP è dunque un plasma colorato e densissimo di quark e gluoni, liberi di interagire tra loro. Queste condizioni sarebbero state quelle dell'universo primordiale, circa 1µs dopo il Big Bang: a seguito di una transizione di fase, si sarebbe poi formata tutta la materia adronica ordinaria. Per riprodurre le condizioni necessarie alla formazione del QGP occorrono collisioni ad energie ultrarelativistiche come quelle prodotte, negli ultimi anni, dall'acceleratore LHC. Uno dei principali rivelatori dedicati all'identificazione di particelle in ALICE è il sistema a tempo di volo TOF. Nonostante un attento processo di ottimizzazione della risoluzione delle sue componenti, persistono residui errori strumentali che limitano la qualità (già ottima) del segnale, tutt'oggi oggetto di studio. L'elaborato presentato in questa tesi è suddiviso in tre capitoli: nel primo ripercorriamo gli aspetti teorici del Modello Standard e del Quark Gluon Plasma. Nel secondo descriviamo la struttura di rivelazione di ALICE, analizzando il funzionamento delle singole componenti. Nel terzo, infine, verifichiamo le principali correzioni al TOF ad oggi note, confrontando i dati a nostra disposizione con delle simulazioni Monte Carlo: questo ci permette da un lato di approfondirne la conoscenza, dall'altro di cercarne di migliorare la descrizione del comportamento del rivelatore.
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.
Resumo:
The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds via annihilation or pair creation. For temperatures T much below the heavy quark mass M, when kinetically equilibrated heavy quarks move very slowly, the annihilation in the colour singlet channel is enhanced because the quark and antiquark attract each other which increases their probability to meet, whereas the octet contribution is suppressed. This is the so-called Sommerfeld effect. It has not been taken into account in previous calculations of the chemical equilibration rate, which are therefore incomplete for T ≲ α2sM . We compute the leading-order equilibration rate in this regime; there is a large enhancement in the singlet channel, but the rate is dominated by the octet channel, and therefore the total effect is small. In the course of the computation we demonstrate how operators that represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated into the imaginary-time formalism.