912 resultados para GENERALIZED-GRADIENT-APPROXIMATION
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The generalized temperature integral I(m, x) appears in non-isothermal kinetic analysis when the frequency factor depends on the temperature. A procedure based on Gaussian quadrature to obtain analytical approximations for the integral I(m, x) was proposed. The results showed good agreement between the obtained approximation values and those obtained by numerical integration. Unless other approximations found in literature, the methodology presented in this paper can be easily generalized in order to obtain approximations with the maximum of accurate.
Resumo:
A comparative study of aggregation error bounds for the generalized transportation problem is presented. A priori and a posteriori error bounds were derived and a computational study was performed to (a) test the correlation between the a priori, the a posteriori, and the actual error and (b) quantify the difference of the error bounds from the actual error. Based on the results we conclude that calculating the a priori error bound can be considered as a useful strategy to select the appropriate aggregation level. The a posteriori error bound provides a good quantitative measure of the actual error.
Resumo:
Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Questions Does the spatial association between isolated adult trees and understorey plants change along a gradient of sand dunes? Does this association depend on the life form of the understorey plant? Location Coastal sand dunes, southeast Brazil. Methods We recorded the occurrence of understorey plant species in 100 paired 0.25 m2 plots under adult trees and in adjacent treeless sites along an environmental gradient from beach to inland. Occurrence probabilities were modelled as a function of the fixed variables of the presence of a neighbour, distance from the seashore and life form, and a random variable, the block (i.e. the pair of plots). Generalized linear mixed models (GLMM) were fitted in a backward step-wise procedure using Akaike's information criterion (AIC) for model selection. Results The occurrence of understorey plants was affected by the presence of an adult tree neighbour, but the effect varied with the life form of the understorey species. Positive spatial association was found between isolated adult neighbour and young trees, whereas a negative association was found for shrubs. Moreover, a neutral association was found for lianas, whereas for herbs the effect of the presence of an adult neighbour ranged from neutral to negative, depended on the subgroup considered. The strength of the negative association with forbs increased with distance from the seashore. However, for the other life forms, the associational pattern with adult trees did not change along the gradient. Conclusions For most of the understorey life forms there is no evidence that the spatial association between isolated adult trees and understorey plants changes with the distance from the seashore, as predicted by the stress gradient hypothesis, a common hypothesis in the literature about facilitation in plant communities. Furthermore, the positive spatial association between isolated adult trees and young trees identified along the entire gradient studied indicates a positive feedback that explains the transition from open vegetation to forest in subtropical coastal dune environments.
Resumo:
The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.
Resumo:
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.
Resumo:
In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.
Resumo:
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.