964 resultados para GAMMA-INTERFERON
Resumo:
Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.
Resumo:
The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.
Resumo:
Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.
Resumo:
Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response.
Resumo:
Prolactin (PRL) induces transcriptional activation of milk protein genes, such as the whey acidic protein (WAP), beta-casein, and beta-lactoglobulin genes, through a signaling cascade encompassing the Janus kinase Jak2 and the mammary gland factor (MGF; also called Stat5), which belongs to the family of proteins of signal transducers and activators of transcription (STAT). We isolated and sequenced from mouse mammary tissue Stat5 mRNA and a previously unreported member, which we named Stat5b (Stat5 is renamed to Stat5a). On the protein level Stat5a and Stat5b show a 96% sequence similarity. The 5' and 3' untranslated regions of the two mRNAs are not conserved. Stat5a comprises 793 amino acids and is encoded by a mRNA of 4.2 kb. The Stat5b mRNA has a size of 5.6 kb and encodes a protein of 786 amino acids. Both Stat5a and Stat5b recognized the GAS site (gamma-interferon-activating sequence; TTCNNNGAA) in vitro and mediated PRL-induced transcription in COS cells transfected with a PRL receptor. Stat5b also induced basal transcription in the absence of PRL. Similar levels of Stat5a and Stat5b mRNAs were found in most tissues of virgin and lactating mice, but a differential accumulation of the Stat5 mRNAs was found in muscle and mammary tissue. The two RNAs are present in mammary tissue of immature virgin mice, and their levels increase up to day 16 of pregnancy, followed by a decline during lactation. The increase of Stat5 expression during pregnancy coincides with the activation of the WAP gene.
Resumo:
Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.
Resumo:
Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.
Resumo:
BALB/c interleukin-4 (IL-4(-/-)) or IL-4 receptor-alpha (IL-4ralpha(-/-)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(-/-) and IL-4ralpha(-/-) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-gamma) production in the liver. These results suggest that IFN-gamma-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.
Resumo:
We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.
Resumo:
Cell-mediated immunity is important for anti-Candida host defence in mucosal tissues. In this study we used cytokine-specific gene knockout mice to investigate the requirement for T helper type 1 (Th1) and Th2 cytokines in recovery from oral candidiasis. Knockout mice used in this study included interleukin-4 (IL-4), IL-10, IL-12p40, interferon-gamma (IFN-gamma), and tumour necrosis factor (TNF). The mice were challenged either orally or systemically with Candida albicans yeasts, and levels of colonization were determined. IL-12p40 knockout mice developed chronic oropharyngeal candidiasis, but were not more susceptible to systemic challenge. On the other hand, TNF knockout mice displayed increased susceptibility to both oral and systemic challenge, but only in the acute stages of infection. TNF apparently has a protective effect in the acute stages of both oral and systemic candidiasis, whereas IL-12p40 is essential for recovery from oral but not systemic candidiasis. The role of IL-12p40, and its relation to T-cell-mediated responses remain to be determined.
Resumo:
Human metapneumovirus (hMPV) has emerged as an important human respiratory pathogen causing upper and lower respiratory tract infections in young children and older adults. In addition, hMPV infection is associated with asthma exacerbation in young children. Recent epidemiological evidence indicates that hMPV may cocircullate with human respiratory syncytial virus (hRSV) and mediate clinical disease similar to that seen with hRSV. Therefore, a vaccine for hMPV is highly desirable. In the present study, we used predictive bioinformatics, peptide immunization, and functional T-cell assays to define hMPV cytotoxic T-lymphocyte (CTL) epitopes recognized by mouse T cells restricted through several major histocompatibility complex class I alleles, including HILA-A*0201. We demonstrate that peptide immunization with hMPV CTL epitopes reduces viral load and immunopathollogy in the lungs of hMPV-challenged mice and enhances the expression of Th1-type cytokines (gamma interferon and interleukin-12 [IL-12]) in lungs and regional lymph nodes. In addition, we show that levels of Th2-type cytolkines (IL-10 and IL-4) are significantly lower in hMPV CTL epitope-vaccinated mice challenged with hMPV. These results demonstrate for the first time the efficacy of an hMPV CTL epitope vaccine in the control of hMPV infection in a murine model.
Resumo:
This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.
Resumo:
Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune system