887 resultados para Génome mitochondrial
Resumo:
The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Sccinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.
Resumo:
Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.
Resumo:
Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
The azodye 2-methyl-4-dimethylaminoazobenzene inhibited oxidation and phosphorylation in tightly coupled rat liver mitochondria. Phosphorylation was more sensitive to the inhibitory action of the azodye than was the oxidation of succinate or ascorbate. The oxidation of NAD+-linked substrate was severely inhibited by the compound. In submitochondrial particles, only NADH oxidation was sensitive. The site of inhibition has been identified to lie between the dehydrogenase flavoprotein and ubiquinone.
Resumo:
Alamethicin, its derivatives and some synthetic fragments have been shown to be uncouplers of oxidative phosphorylation in rat liver mitochondria. A minimum peptide chain length of 13 residues is necessary for this activity. Peptide esters are more efficient uncouplers than the corresponding peptide acids. Esterification of the Glu(18) γ-COOH group in alamethicin does not diminish uncoupling activity. The structural requirements for uncoupling activity parallel those determined for ionophoretic action in small, unilamellar liposomes. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; Ac, acetyl; CTC, chlortetracycline.
Resumo:
Lutein (3,3'-dihydroxy alpha-carotene), a xanthophyll present in plant chloroplasts, increases the permeability of phospholipid vesicles to Ca2+, even though the pigment does not bind the metal ion. Energy-dependent uptake of Ca2+ by mitochondria is inhibited by lutein, which permits a rapid efflux of the ion from Ca2+-loaded mitochondria. These results are consistent with the view that the deleterious action of lutein on mitochondrial oxidative phosphorylation results from its destabilizing action on membrane structure.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.
Resumo:
Carpintero and Dellap, (Hemiptera: Thaumastocoridae) is a native Australian sap-feeding insect that has become invasive and seriously damaging to commercially grown in the Southern Hemisphere. Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of . If implemented as a biological control agent, this factor will need to be considered in collecting and releasing .
Resumo:
The silver gemfish Rexea solandri is an important economic resource but vulnerable to overfishing in Australian waters. The complete mitochondrial genome sequence is described from 1.6 million reads obtained via next generation sequencing. The total length of the mitogenome is 16,350 bp comprising 2 rRNA, 13 protein-coding genes, 22 tRNA and 2 non-coding regions. The mitogenome sequence was validated against sequences of PCR fragments and BLAST queries of Genbank. Gene order was equivalent to that found in marine fishes.
Resumo:
Using mitochondrial DNA for species identification and population studies assumes that the genome is maternally inherited, circular, located in the cytoplasm and lacks recombination. This study explores the mitochondrial genomes of three anomalous mackerel. Complete mitochondrial genome sequencing plus nuclear microsatellite genotyping of these fish identified them as Scomberomorus munroi (spotted mackerel). Unlike normal S. munroi, these three fish also contained different linear, mitochondrial genomes of Scomberomorus semifasciatus (grey mackerel). The results are best explained by hybridisation, paternal leakage and mitochondrial DNA linearization. This unusual observation may provide an explanation for mtDNA outliers in animal population studies. © 2013.
Resumo:
In cells, the balance of oxidation and reduction reactions (redox chemistry) plays a significant role in key biological processes such as cell signaling, cell fate determination and the body's defence systems, all of which contribute significantly to the overall well-being of the body. This project served as a step forward in developing a more efficient method to monitor mitochondrial redox status. The method is based on the application of profluorescent nitroxides (PFN) that change in fluorescent intensity based on changing mitochondrial redox status. A major impact of this project is to facilitate assessment of mitochondrial redox status and thereby determine the efficacy of antioxidant treatments.
Resumo:
1. a-p-Chlorophenoxyisobutyric acid, the ethyl ester of which is widely used as an antihypercholesterolaemic drug, is an inhibitor of energy-transfer reactions in isolated rat liver mitochondria. 2. The compound at lower concentrations (<4.0mmol/mg of mitochondrial protein) inhibits state 3 oxidation, stimulates state 4 oxidation, abolishes respiratory control and stimulates the latent adenosine triphosphatase activity of mitochondria. The inhibition imposed on state 3 oxidation is relieved by dinitrophenol. 3. At higher concentrations it inhibits coupled phosphorylation as well as dinitrophenol-stimulated adenosine triphosphatase activity. The inhibition of state 3 oxidation under these conditions is not reversed by uncouplers. 4. The three coupling sites of phosphorylation exhibit differential susceptibility to inactivation by this compound. Coupled phosphorylation at the first site is abolished at a drug concentration of 3.0mmol/mg of protein. The third site is inactivated when the concentration of the drug reaches 5.0mmol/mg of protein. The second site is the most refractory and drug concentrations of the order of 10.0mmol/mg of protein are required effectively to inhibit phosphorylation at this site. 5. The compound also inhibits ATP-dependent reversal of electron transport as well as the adenosine triphosphatase activity in submitochondrial particles. 6. The oxidation of NADH and succinate in these particles is not inhibited. 7. These properties indicate that the compound acts as an `inhibitory uncoupler' of energy-transfer reactions in isolated mitochondria.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.