855 resultados para Fuzzy rules
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.
Resumo:
This work presents a proposal to detect interface in atmospheric oil tanks by installing a differential pressure level transmitter to infer the oil-water interface. The main goal of this project is to maximize the quantity of free water that is delivered to the drainage line by controlling the interface. A Fuzzy Controller has been implemented by using the interface transmitter as the Process Variable. Two ladder routine was generated to perform the control. One routine was developed to calculate the error and error variation. The other was generate to develop the fuzzy controller itself. By using rules, the fuzzy controller uses these variables to set the output. The output is the position variation of the drainage valve. Although the ladder routine was implemented into an Allen Bradley PLC, Control Logix family it can be implemented into any brand of PLCs
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture. This architecture tries to minimize the time processing used in? the several stages of hazy modeling of systems and processes. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in private way. Therefore, the simplified architecture allows a fast and easy configuration of the fuzzy controller.All rules that define the control actions are determined by inference procedures and the defuzzification is made automatically using a simplified algorithm. The fuzzy controller operation is standardized and the control actions are previously calculated For general-purpose application? ann results, the industrial systems of fluid pow cona ol will be considered.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE.
Resumo:
One of the critical problems in implementing an intelligent grinding process is the automatic detection of workpiece surface burn. This work uses fuzzy logic as a tool to classify and predict burn levels in the grinding process. Based on acoustic emission signals, cutting power, and the mean-value deviance (MVD), linguistic rules were established for the various burn situations (slight, intermediate, severe) by applying fuzzy logic using the Matlab Toolbox. Three practical fuzzy system models were developed. The first model with two inputs resulted only in a simple analysis process. The second and third models have an additional MVD statistic input, associating information and precision. These two models differ from each other in terms of the rule base developed. The three developed models presented valid responses, proving effective, accurate, reliable and easy to use for the determination of ground workpiece burn. In this analysis, fuzzy logic translates the operator's human experience associated with powerful computational methods.
Resumo:
In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.