748 resultados para Fuzzy ranking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous different and sometimes discrepant interests can be affected, both positively and negatively, throughout the course of a major infrastructure and construction (MIC) project. Failing to address and meet the concerns and expectations of the stakeholders involved has resulted in many project failures. One way to address this issue is through a participatory approach to project decision making. Whether the participation mechanism is effective or not depends largely on the client/owner. This paper provides a means of systematically evaluating the effectiveness of the public participation exercise, or even the whole project, through the measurement of stakeholder satisfaction. Since the process of satisfaction measurement is complicated and uncertain, requiring approximate reasoning involving human intuition, a fuzzy approach is adopted. From this, a multi-factor hierarchical fuzzy comprehensive evaluation model is established to facilitate the evaluation of satisfaction in both single stakeholder group and overall MIC project stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grading osteoarthritic tissue has, until now, been a laboratory process confined to research activities. This thesis establishes a scientific protocol that extends osteoarthritic tissue ranking to surgical practice. The innovative protocol, which now incorporates the structural degeneration of collagen, enhances the traditional Modified Mankin ranking system, enabling its application to real time decision during surgery. Because it is fast and without time consuming laboratory process, it would potentially enable the cataloguing of tissues in osteoarthritic joints in all compartments of diseased joints during surgery for epistemological study and insight into the manifestation of osteoarthritis across age, gender, occupation, physical activities and race.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years several works have investigated a formal model for Information Retrieval (IR) based on the mathematical formalism underlying quantum theory. These works have mainly exploited geometric and logical–algebraic features of the quantum formalism, for example entanglement, superposition of states, collapse into basis states, lattice relationships. In this poster I present an analogy between a typical IR scenario and the double slit experiment. This experiment exhibits the presence of interference phenomena between events in a quantum system, causing the Kolmogorovian law of total probability to fail. The analogy allows to put forward the routes for the application of quantum probability theory in IR. However, several questions need still to be addressed; they will be the subject of my PhD research