942 resultados para Fuzzy min-max neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical diagnostic and prognostic problems are prime examples of decision making in the face of uncertainty. In this paper, we investigate the applicability of the Fuzzy ARTMAP neural network as an intelligent decision support system in clinical medicine. In particular, Fuzzy ARTMAP is employed as a predictive model for prognosis of complications in patients admitted to the Coronary Care Units. A number of off-line and on-line experiments have been conducted with various network parameter settings, training methods, and learning rules. The results are compared with those from other systems including the logistic regression model. In addition, the outcomes of a set of on-line learning experiments revealed the potential of employing Fuzzy ARTMAP as an autono-mously learning system that is able to learn perpetually and, at the same time, to provide useful decision support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of a keystroke dynamics-based user authentication system using the ARTMAP-FD neural network. The effectiveness of ARTMAPFD in classifying keystroke patterns is analyzed and compared against a number of widely used machine learning systems. The results show that ARTMAP-FD performs well against many of its counterparts in keystroke patterns classification. Apart from that, instead of using the conventional typing timing characteristics, the applicability of typing pressure to ascertaining user's identity is investigated. The experimental results show that combining both latency and pressure patterns can improve the Equal Error Rate (ERR) of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a study of the effectiveness of a multiple classifier system (MCS) in a medical diagnostic task is described. A hybrid network, based on the integration of a fuzzy ARTMAP and the probabilistic neural network, is employed as the basis of the MCS. Outputs from multiple networks are combined using some decision combination method to reach a final prediction. By using a real medical database, a set of experiments has been conducted to evaluate the performance of the MSC with different network configurations. The experimental results reveal the potential of the MCS as a useful decision support tool in the medical field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of an adaptive neural network, called Fuzzy ARTMAP (FAM), to handle fault prediction and condition monitoring problems in a power generation station. The FAM network, which is supplemented with a pruning algorithm, is used as a classifier to predict different machine conditions, in an off-line learning mode. The process under scrutiny in the power plant is the Circulating Water (CW) system, with prime attention to monitoring the heat transfer efficiency of the condensers. Several phases of experiments were conducted to investigate the `optimum' setting of a set of parameters of the FAM classifier for monitoring heat transfer conditions in the power plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid network, based on the integration of Fuzzy ARTMAP (FAM) and the Rectangular Basis Function Network (RecBFN), is proposed for rule learning and extraction problems. The underlying idea for such integration is that FAM operates as a classifier to cluster data samples based on similarity, while the RecBFN acts as a “compressor” to extract and refine knowledge learned by the trained FAM network. The hybrid network is capable of classifying data samples incrementally as well as of acquiring rules directly from data samples for explaining its predictions. To evaluate the effectiveness of the hybrid network, it is applied to a fault detection and diagnosis task by using a set of real sensor data collected from a Circulating Water (CW) system in a power generation plant. The rules extracted from the network are analyzed and discussed, and are found to be in agreement with experts’ opinions used in maintaining the CW system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, prediction interval (PI)-based modelling techniques are introduced and applied to capture the nonlinear dynamics of a polystyrene batch reactor system. Traditional NN models are developed using experimental datasets with and without disturbances. Simulation results indicate that traditional NNs cannot properly handle disturbances in reactor data and demonstrate a poor forecasting performance, with an average MAPE of 22% in the presence of disturbances. The lower upper bound estimation (LUBE) method is applied for the construction of PIs to quantify uncertainties associated with forecasts. The simulated annealing optimization technique is employed to adjust NN parameters for minimization of an innovative PI-based cost function. The simulation results reveal that the LUBE method generates quality PIs without requiring prohibitive computations. As both calibration and sharpness of PIs are practically and theoretically satisfactory, the constructed PIs can be used as part of the decision-making and control process of polymerization reactors. © 2014 The Institution of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a hybrid controller based on the combination of fuzzy logic control (FLC) mechanism and internal model-based control (IMC). Neural network-based inverse and forward models are developed for IMC. After designing the FLC and IMC independently, they are combined in parallel to produce a single control signal. Mean averaging mechanism is used to combine the prediction of both controllers. Finally, performance of the proposed hybrid controller is studied for a nonlinear numerical plant model (NNPM). Simulation result shows the proposed hybrid controller outperforms both FLC and IMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.