86 resultados para Frobenius
Resumo:
Vols. 1-9 and v. 11 have the series statement preceded by: Muenchen; v. 10 and 12 by: Frankfurt/M.
Resumo:
Mode of access: Internet.
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
Tensor analysis plays an important role in modern image and vision computing problems. Most of the existing tensor analysis approaches are based on the Frobenius norm, which makes them sensitive to outliers. In this paper, we propose L1-norm-based tensor analysis (TPCA-L1), which is robust to outliers. Experimental results upon face and other datasets demonstrate the advantages of the proposed approach. © 2006 IEEE.
Resumo:
A páronként összehasonlított alternatívák rangsorolásának problémája egyaránt felmerül a szavazáselmélet, a statisztika, a tudománymetria, a pszichológia és a sport területén. A nemzetközi szakirodalom alapján részletesen áttekintjük a megoldási lehetőségeket, bemutatjuk a gyakorlati alkalmazások során fellépő kérdések kezelésének, a valós adatoknak megfelelő matematikai környezet felépítésének módjait. Kiemelten tárgyaljuk a páros összehasonlítási mátrix megadását, az egyes pontozási eljárásokat és azok kapcsolatát. A tanulmány elméleti szempontból vizsgálja a Perron-Frobenius tételen alapuló invariáns, fair bets, PageRank, valamint az irányított gráfok csúcsainak rangsorolásra javasolt internal slackening és pozíciós erő módszereket. A közülük történő választáshoz az axiomatikus megközelítést ajánljuk, ennek keretében bemutatjuk az invariáns és a fair bets eljárások karakterizációját, és kitérünk a módszerek vitatható tulajdonságaira. _____ The ranking of the alternatives or selecting the best one are fundamental issues of social choice theory, statistics, psychology and sport. Different solution concepts, and various mathematical models of applications are reviewed based on the international literature. We are focusing on the de¯nition of paired comparison matrix, on main scoring procedures and their relation. The paper gives a theoretical analysis of the invariant, fair bets and PageRank methods, which are founded on Perron-Frobenius theorem, as well as the internal slackening and positional power procedures used for ranking the nodes of a directed graph. An axiomatic approach is proposed for the choice of an appropriate method. Besides some known characterizations for the invariant and fair bets methods, we also discuss the violation of some properties, meaning their main weakness.
Resumo:
El concurso de transformación mágica, esquema narrativo difundido en la tradición popular, se presenta en dos variantes principales: los hechiceros que compiten pueden metamorfosearse en varios seres o crear esos seres por medios mágicos. En cualquier caso el concursante ganador da a luz criaturas más fuertes que superan las de su oponente. La segunda variante fue preferida en el antiguo Cercano Oriente (Sumeria, Egipto, Israel). La primera se puede encontrar en algunos mitos griegos sobre cambiadores de forma (por ejemplo, Zeus y Némesis). El mismo esquema narrativo puede haber influido en un episodio de la Novela de Alejandro (1.36-38), en el que Darío envía regalos simbólicos a Alejandro y los dos monarcas enemigos ofrecen contrastantes explicaciones de ellos. Esta historia griega racionaliza el concurso de cuento de hadas, transfiriendo las fantásticas hazañas de creaciones milagrosas a un plano secundario pero realista de metáfora lingüística.
Resumo:
We study congruences in the coefficients of modular and other automorphic forms. Ramanujan famously found congruences for the partition function like p(5n+4) = 0 mod 5. For a wide class of modular forms, we classify the primes for which there can be analogous congruences in the coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan congruences in the counting functions for overparitions, overpartition pairs, crank differences, and Andrews' two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number of holomorphic modular forms with Ramanujan congruences when the weight is large enough. In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter contains a completely unrelated result about harmonic weak Maass forms.
Resumo:
The real-quaternionic indicator, also called the $\delta$ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the Frobenius-Schur indicator, which we call the $\varepsilon$ indicator. The Frobenius-Schur indicator $\varepsilon(\pi)$ is known to be given by a particular value of the central character. We would like a similar result for the $\delta$ indicator. When $G$ is compact, $\delta(\pi)$ and $\varepsilon(\pi)$ coincide. In general, they are not necessarily the same. In this thesis, we will give a relation between the two indicators when $G$ is a real reductive algebraic group. This relation also leads to a formula for $\delta(\pi)$ in terms of the central character. For the second part, we consider the construction of the local Langlands correspondence of $GL(2,F)$ when $F$ is a non-Archimedean local field with odd residual characteristics. By re-examining the construction, we provide new proofs to some important properties of the correspondence. Namely, the construction is independent of the choice of additive character in the theta correspondence.
Resumo:
Marca tip. "Froben" en port. y en 2O6v
Resumo:
Imp. tomados del colofón
Resumo:
Um semigrupo numérico é um submonoide de (N, +) tal que o seu complementar em N é finito. Neste trabalho estudamos alguns invariantes de um semigrupo numérico S tais como: multiplicidade, dimensão de imersão, número de Frobenius, falhas e conjunto Apéry de S. Caracterizamos uma apresentação minimal para um semigrupo numérico S e descrevemos um método algorítmico para determinar esta apresentação. Definimos um semigrupo numérico irredutível como um semigrupo numérico que não pode ser expresso como intersecção de dois semigrupos numéricos que o contenham propriamente. A finalizar este trabalho, estudamos os semigrupos numéricos irredutíveis e obtemos a decomposição de um semigrupo numérico em irredutíveis. ABSTRACT: A numerical semigroup is a submonoid of (N, +) such that its complement of N is finite. ln this work we study some invariants of a numerical semigroup S such as: multiplicity, embedding dimension, Frobenius number, gaps and Apéry set of S. We characterize a minimal presentation of a numerical semigroup S and describe an algorithmic procedure which allows us to compute a minimal presentation of S. We define an irreducible numerical semigroup as a numerical semigroup that cannot be expressed as the intersection of two numerical semigroups properly containing it. Concluding this work, we study and characterize irreducible numerical semigroups, and describe methods for computing decompositions of a numerical semigroup into irreducible numerical semigroups.