994 resultados para Fredholm Integral Equations
Resumo:
We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.
Resumo:
We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Resumo:
We present a novel numerical method for a mixed initial boundary value problem for the unsteady Stokes system in a planar doubly-connected domain. Using a Laguerre transformation the unsteady problem is reduced to a system of boundary value problems for the Stokes resolvent equations. Employing a modied potential approach we obtain a system of boundary integral equations with various singularities and we use a trigonometric quadrature method for their numerical solution. Numerical examples are presented showing that accurate approximations can be obtained with low computational cost.
Resumo:
Regions containing internal boundaries such as composite materials arise in many applications.We consider a situation of a layered domain in IR3 containing a nite number of bounded cavities. The model is stationary heat transfer given by the Laplace equation with piecewise constant conductivity. The heat ux (a Neumann condition) is imposed on the bottom of the layered region and various boundary conditions are imposed on the cavities. The usual transmission (interface) conditions are satised at the interface layer, that is continuity of the solution and its normal derivative. To eciently calculate the stationary temperature eld in the semi-innite region, we employ a Green's matrix technique and reduce the problem to boundary integral equations (weakly singular) over the bounded surfaces of the cavities. For the numerical solution of these integral equations, we use Wienert's approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a fully discrete projection method with super-algebraic convergence order is proposed. A proof of an error estimate for the approximation is given as well. Numerical examples are presented that further highlights the eciency and accuracy of the proposed method.
Resumo:
The problem considered is that of determining the shape of a planar acoustically sound-soft obstacle from knowledge of the far-field pattern for one time-harmonic incident field. Two methods, which are based on the solution of a pair of integral equations representing the incoming wave and the far-field pattern, respectively, are proposed and investigated for finding the unknown boundary. Numerical resultsare included which show that the methods give accurate numerical approximations in relatively few iterations.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10
Resumo:
Development of reliable methods for optimised energy storage and generation is one of the most imminent challenges in modern power systems. In this paper an adaptive approach to load leveling problem using novel dynamic models based on the Volterra integral equations of the first kind with piecewise continuous kernels. These integral equations efficiently solve such inverse problem taking into account both the time dependent efficiencies and the availability of generation/storage of each energy storage technology. In this analysis a direct numerical method is employed to find the least-cost dispatch of available storages. The proposed collocation type numerical method has second order accuracy and enjoys self-regularization properties, which is associated with confidence levels of system demand. This adaptive approach is suitable for energy storage optimisation in real time. The efficiency of the proposed methodology is demonstrated on the Single Electricity Market of Republic of Ireland and Northern Ireland.
Resumo:
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.