985 resultados para Fracture resistance
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants (3.5 x 11 mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at 45 degrees inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated. [J Adv Prosthodont 2012;4:158-61]
Resumo:
This ex vivo pilot study tested the influence of defect extension and quartz-fiber post placement (QFP) on the ex vivo survival rate and fracture resistance of root-treated upper central incisors served as abutments for zirconia 2-unit cantilever fixed partial dentures (2U-FPDs) exposed to 10 years of simulated clinical function.
Resumo:
Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (400 µatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.
Resumo:
El comportamiento post-rotura de los vidrios laminados es uno de los temas que están siendo investigados para explicar la capacidad de carga remanente tras la rotura de la primera lámina. En investigaciones previas se ha observado que en el caso de impacto humano en vidrios recocidos se llega a una capacidad hasta 3 veces superior, sin explicación clara del comportamiento estructural del conjunto. Para realizar un acercamiento a la resistencia a la rotura del vidrio laminado se ha planificado una campaña de ensayos de rotura con anillos concéntricos de grandes superficies en vidrio recocido, termoendurecido y templado, con dos series adicionales de vidrio recocido y termoendurecido con una capa de butiral adherida justo después del proceso de fabricación. Para realizar la comparación de las distribuciones de Weibull de las distintas tensiones de rotura se utiliza un proceso iterativo basado en la distribución real de tensiones obtenida con un modelo de elementos finitos ajustado con datos experimentales. Las comparaciones finales muestran un aumento apreciable de la resistencia (45%) en el caso de vidrios recocidos, y menor en el de los termoendurecidos (25%).The post-fracture behavior of the laminated glasses is one of the research topics that are being studied to explain the load capacity after the break of the first sheet. Previous experimental work have shown, that in case of human impact in annealed glasses, the capacity of bearing load it can be up to 3 times higher without clear explanation of the structural behavior of the plate. To make an approximation to the post-fracture resistance, a experimental program to test annealed, heat-tempered and toughened glass plates has been prepared. Two additional series of annealed and heattempered, with a layer of polyvinyl butyral adhered just after the manufacturing process, have also been incorporated. Coaxial Double Ring with large test surface areas Coaxial Double Ring with large test surface areas is the standard that has been followed. To make the comparison of Weibull's distributions of the different fracture stress, an iterative process based on the actual stress distribution obtained with a finite elements model updated with experimental results has been used. Final comparisons show a great stress improvement for the annealed glass plates (45 %), and a minor increment for the heat-tempered (25 %).
Resumo:
Este trabalho apresenta uma investigação experimental sobre o comportamento à fratura frágil de aços estruturais ferríticos, ASTM A285 Gr C e ASTM A515 Gr 65. Os resultados deste trabalho ampliam a base de dados de propriedades mecânicas utilizadas nas análises de integridade de estruturas pressurizadas tais como vasos de pressão e tanques de armazenamento construídos com esta classe de material. O trabalho tem por objetivo também avaliar a aplicabilidade de corpos de prova de dimensões reduzidas, PCVN, na determinação da temperatura de referência, T0, por meio da metodologia da Curva Mestra, a qual define a dependência da tenacidade à fratura do material em função da temperatura. Os ensaios de tenacidade à fratura foram conduzidos utilizando-se corpos de prova solicitados em flexão três pontos com geometria SE(B), PCVN e PCVN com entalhe lateral, extraídos de chapas laminadas. Os resultados dos ensaios foram obtidos em termos de integral J no momento da instabilidade, denotados por Jc. Dados adicionais de resistência à tração e de Impacto Charpy convencional também foram obtidos para caracterizar o comportamento mecânico dos aços utilizados. Os resultados mostraram uma forte influência da geometria dos corpos de prova sobre os valores de Jc, evidenciada pela grande variação nos valores de tenacidade à fratura.
Resumo:
Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.
Resumo:
A Endodontia é uma área em constante evolução. Consideráveis desenvolvimentos nos materiais e técnicas têm sido essenciais para o melhoramento dos resultados nos tratamentos realizados. É exemplo disso mesmo a constituição dos instrumentos Endodônticos primordiais, construídos em cordas de piano, com evolução para aço de carbono, material este que sofria corrosão provocado pelo cloro presente no hipoclorito de sódio. O aço de carbono evoluiu para aço inoxidável e deste as limas endodônticas passaram a ser feitas em níquel-titânio, conferindo-lhes melhor flexibilidade e efeito de memória de forma. Mesmo com todas estas melhorias significativas, fraturas de instrumentos e erros durante a instrumentação continuam a acontecer e com eles veio a necessidade da pesquisa de possíveis melhorias da constituição das limas em NiTi. Como resultado surgiram ligas como o M-wire, fase-R e CM-wire, criadas a partir de tratamentos térmicos, que trouxeram às limas Endodônticas maior flexibilidade e resistência à fratura que os instrumentos feitos em NiTi convencional. A mais recente evolução das limas Ni-Ti, desenvolvida pela Coltene Whaldent (Allstätten, Suiça), são as limas Hyflex EDM, limas para canais radiculares de 5ª geração. O seu processo de fabrico por eletroerosão cria uma superfície única fazendo com que estas limas sejam mais duras e resistam mais à quebra, aliado à sua alta flexibilidade. É possível assim reduzir o número de limas para a limpeza e modelagem dos canais durante os tratamentos endodônticos sem comprometer a preservação da anatomia dos canais. As limas Hyflex EDM possuem, tal como as limas Hyflex CM, o efeito de controle de memória (CM), o que confere propriedades muito similares entre os dois sistemas.
Resumo:
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.