896 resultados para Fractional Fourier Transform
Resumo:
In this work we introduce the periodic nonlinear Fourier transform (PNFT) and propose a proof-of-concept communication system based on it by using a simple waveform with known nonlinear spectrum (NS). We study the performance (addressing the bit-error-rate (BER), as a function of the propagation distance) of the transmission system based on the use of the PNFT processing method and show the benefits of the latter approach. By analysing our simulation results for the system with lumped amplification, we demonstrate the decent potential of the new processing method.
Resumo:
Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.
Resumo:
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Resumo:
In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique.
Resumo:
What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
International audience
Resumo:
info:eu-repo/semantics/inPress
Resumo:
This correspondence studies the formulation of members ofthe Cohen-Posch class of positive time-frequency energy distributions.Minimization of cross-entropy measures with respect to different priorsand the case of no prior or maximum entropy were considered. It isconcluded that, in general, the information provided by the classicalmarginal constraints is very limited, and thus, the final distributionheavily depends on the prior distribution. To overcome this limitation,joint time and frequency marginals are derived based on a "directioninvariance" criterion on the time-frequency plane that are directly relatedto the fractional Fourier transform.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
This paper addresses the DNA code analysis in the perspective of dynamics and fractional calculus. Several mathematical tools are selected to establish a quantitative method without distorting the alphabet represented by the sequence of DNA bases. The association of Gray code, Fourier transform and fractional calculus leads to a categorical representation of species and chromosomes.
Resumo:
We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented.
Resumo:
This paper presents a fractional calculus perspective in the study of signals captured during the movement of a mechanical manipulator carrying a liquid container. In order to study the signals an experimental setup is implemented. The system acquires data from the sensors, in real time, and, in a second phase, processes them through an analysis package. The analysis package runs off-line and handles the recorded data. The results show that the Fourier spectrum of several signals presents a fractional behavior. The experimental study provides useful information that can assist in the design of a control system and the trajectory planning to be used in reducing or eliminating the effect of vibrations.