96 resultados para Frühneuzeitliche Höfe
Resumo:
INTRODUCTION Fibrinogen storage disease (FSD) is characterized by hypofibrinogenemia and hepatic inclusions due to impaired release of mutant fibrinogen which accumulates and aggregates in the hepatocellular endoplasmic reticulum. Liver disease is variable. AIM We studied a new Swiss family with fibrinogen Aguadilla. In order to understand the molecular peculiarity of FSD mutations, fibrinogen Aguadilla and the three other causative mutations, all located in the γD domain, were modelled. METHOD The proband is a Swiss girl aged 4 investigated because of fatigue and elevated liver enzymes. Protein structure models were prepared using the Swiss-PdbViewer and POV-Ray software. RESULTS The proband was found to be heterozygous for fibrinogen Aguadilla: FGG Arg375Trp. Familial screening revealed that her mother and maternal grandmother were also affected and, in addition, respectively heterozygous and homozygous for the hereditary haemochromatosis mutation HFE C282Y. Models of backbone and side-chain interactions for fibrinogen Aguadilla in a 10-angstrom region revealed the loss of five H-bonds and the gain of one H-bond between structurally important amino acids. The structure predicted for fibrinogen Angers showed a novel helical structure in place of hole 'a' on the outer edge of γD likely to have a negative impact on fibrinogen assembly and secretion. CONCLUSION The mechanism by which FSD mutations generate hepatic intracellular inclusions is still not clearly established although the promotion of aberrant intermolecular strand insertions is emerging as a likely cause. Reporting new cases is essential in the light of novel opportunities of treatment offered by increasing knowledge of the degradation pathway and autophagy.
Resumo:
Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.
Resumo:
We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.
Resumo:
Objective: In Southern European countries up to one-third of the patients with hereditary hemochromatosis (HH) do not present the common HFE risk genotype. In order to investigate the molecular basis of these cases we have designed a gene panel for rapid and simultaneous analysis of 6 HH-related genes (HFE, TFR2, HJV, HAMP, SLC40A1 and FTL) by next-generation sequencing (NGS). Materials and Methods: Eighty-eight iron overload Portuguese patients, negative for the common HFE mutations, were analysed. A TruSeq Custom Amplicon kit (TSCA, by Illumina) was designed in order to generate 97 amplicons covering exons, intron/exon junctions and UTRs of the mentioned genes with a cumulative target sequence of 12115bp. Amplicons were sequenced in the MiSeq instrument (IIlumina) using 250bp paired-end reads. Sequences were aligned against human genome reference hg19 using alignment and variant caller algorithms in the MiSeq reporter software. Novel variants were validated by Sanger sequencing and their pathogenic significance were assessed by in silico studies. Results: We found a total of 55 different genetic variants. These include novel pathogenic missense and splicing variants (in HFE and TFR2), a very rare variant in IRE of FTL, a variant that originates a novel translation initiation codon in the HAMP gene, among others. Conclusion: The merging of TSCA methodology and NGS technology appears to be an appropriate tool for simultaneous and fast analysis of HH-related genes in a large number of samples. However, establishing the clinical relevance of NGS-detected variants for HH development remains a hard-working task, requiring further functional studies.
Resumo:
Introdution: Haemochromatosis-type IV, the ferroportin disease, is characterized by an autosomal-dominant transmission and early iron accumulation in macrophages. It is caused by mutations in the transmembrane iron exporter protein ferroportin1 (SLC40A1 gene). In form A (classic), ferroportin loss of function mutants are unable to export iron from cells leading to cellular iron accumulation with decreased availability of iron for serum transferrin (TS). We present a Portuguese rare clinical case of HH-IV. Materials and Methods: A 41-year-old woman with hyperferritinemia and normal TS. Causes of hyperferritinemia (inflammation, chronic alcohol consumption, metabolic syndrome, cell necrosis, non-alcoholic fatty liver disease and aceruloplasminemia) were assessed. Liver iron, evaluated by magnetic resonance imaging (MRI) was carried out. Screening for mutation in HFE and SCL40A1 genes were performed by Sanger sequencing. Baseline: Ferritin:708ng/ml; TS: 27%; MRI:85µmol/g; Hb:13,6g/dl. Therapy: weekly 450ml Therapeutic Phlebotomies (TP) until ferritin≤50ng/ml. Results: Hyperferritinemia comorbidities and common genetic mutations for haemochromatosis were negative. However, sequencing of the patient SLC40A1 gene has revealed the presence in heterozygosity of the variant c.238G>A; p.Gly80Ser. Due to low tolerance to TP, we adopted smaller phlebotomies every three weeks. Conclusion: This patient has a rare autosomal-dominant Ferroportin disease due to a mutated ferroportin which is predicted to be defective in iron cellular export. In agreement, she presents hyperferritinemia, with normal TS and liver iron overload. The genotype/phenotype association allowed to diagnosis this rare FD case. Although a mild form A, we decided to start TP. Her father also has been treated for iron overload.
Resumo:
A homeostase do ferro requer um rigoroso processo de regulação, uma vez que este é um elemento essencial para alguns dos mecanismos celulares básicos mas, quando se encontra em excesso, origina profundos danos celulares e falha de órgãos. Dado que o organismo humano não possui um mecanismo ativo de excreção de ferro, é essencial que a sua homeostase seja estabelecida através de uma estreita comunicação entre os locais de absorção, utilização e armazenamento. Esta interligação é conseguida, essencialmente, através da ação de uma hormona circulante, a hepcidina. A hepcidina é sintetizada ao nível dos hepatócitos do fígado, sendo a sua expressão aumentada pelos níveis de ferro e inflamação e suprimida pela eritropoiese e hipoxia. A hepcidina regula negativamente a absorção duodenal do ferro proveniente da alimentação, a libertação pelos macrófagos do ferro resultante da fagocitose dos glóbulos vermelhos senescentes, assim como a libertação do ferro armazenado nos hepatócitos. A hemocromatose hereditátria (HH) do tipo 1 é uma doença de transmissão autossómica recessiva associada a mutações no gene HFE (p.Cys282Tyr e p.His63Asp). É a patologia humana mais comum de sobrecarga primária em ferro, apresenta penetrância incompleta, e é um dos distúrbios genéticos mais frequentes em caucasianos de ascendência Norte-Europeia. Na hemocromatose, apesar de haver um excesso de ferro no organismo, este facto não é refletido no nível de expressão da hormona hepcidina (cujos níveis deveriam aumentar). Pelo contrário, o nível de expressão da hepcidina encontra-se diminuído o que perpetua a constante absorção do ferro a nível duodenal. Os sintomas associados à doença iniciam-se geralmente na meia-idade e começam por consistir em sintomas gerais de fadiga e dores articulares. No entanto, a progressiva acumulação do ferro em vários órgãos (tais como fígado, coração e pâncreas) provoca aí graves danos, tais como cirrose, carcinoma hepatocelular, cardiomiopatias e diabetes. Para além da HH do tipo 1, podem ocorrer outros tipos de hemocromatose por mutações noutros genes relacionados com o metabolismo do ferro (tais como TFR2, HJV, HAMP, SLC40A1, etc). Mutações em genes como HAMP e HJV associam-se a hemocromatoses mais graves, de início ainda na juventude (hemocromatose juvenil). A implementação no nosso laboratório da nova metodologia de Next-Generation Sequencing permitiu-nos realizar a pesquisa de variantes simultaneamente em 6 genes relacionados com o metabolismo do ferro, em 88 doentes com fenótipo de hemocromatose hereditária não-clássica. Foram identificadas 54 variantes diferentes sendo algumas delas novas. Estudos in silico e estudos funcionais in vitro (em linhas celulares) permitiram-nos comprovar a patogenicidade de algumas das variantes novas e compreender os mecanismos moleculares subjacentes ao desenvolvimento da sobrecarga em ferro. Pelo contrário, no lado oposto do espetro das patologias relacionadas com o ferro, encontram-se as anemias por falta de ferro (anemias ferropénicas). A Organização Mundial de Saúde define anemia quando os níveis de hemoglobina no sangue são menores do que 12 g/dL na Mulher e 13 g/dL no Homem. A hemoglobina é a proteína existente nos glóbulos vermelhos do sangue, responsável pelo transporte de oxigénio no organismo, e cuja molécula é um tetrâmero formado por 4 cadeias polipeptídicas (as globinas) e 4 grupos heme que contêm 4 átomos de ferro. A falta de ferro impede que se formem as moléculas de hemoglobina a níveis normais em cerca de 20% da população portuguesa e isso é devido a carências alimentares ou a dificuldades na absorção do ferro proveniente da alimentação. Entre os fatores genéticos moduladores desta última situação parecem estar algumas variantes polimórficas no gene TMPRSS6, codificante da proteína Matriptase-2, um dos agentes envolvidos na regulação da expressão da hepcidina. Por outro lado, mutações neste gene dão origem a anemias ferropénicas graves, refratárias ao tratamento oral com ferro (Iron Refractory Iron Deficiency Anaemia - IRIDA). As Hemoglobinopatias são outro tipo de anemia hereditária. Estas não estão relacionadas com o défice de ferro mas sim com defeitos nas cadeias globínicas, constituintes da hemoglobina (α2β2). As hemoglobinopatias que estão relacionadas com um problema quantitativo, ou seja quando há ausência ou diminuição de síntese de uma cadeia globínica, denominam-se talassémias: beta-talassémia, alfa-talassémia, delta-talassémia, etc, consoante o gene afetado. Por outro lado, quando o problema é de carácter qualitativo, ou seja ocorre a síntese de uma cadeia globínica estruturalmente anómala, esta é denominada uma variante de hemoglobina. Enquadra-se neste último grupo a Anemia das Células Falciformes ou Drepanocitose. As hemoglobinopatias são das patologias genéticas mais frequentes no mundo, sendo que nalguns locais são um grave problema de saúde pública. Em Portugal foram realizados estudos epidemiológicos que permitiram determinar a frequência de portadores na população e foi implementado um programa de prevenção.
Resumo:
AIM Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. METHODS We followed a standard guideline development process; including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RESULTS RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. CONCLUSIONS Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT.
Resumo:
The original ed., Augsburg, 1600, has title: Itinerarium, das ist: Historische Beschreibung, weylund Herrn Georgen von Ehingen Raisenn nach der Ritterschafft, vor 150 Jaren, in X. vnderschidliche Königreich verbracht ... Neben beygefügten Contrafacturn, deren Potentaten vnd Könige, an welcher Höfe obgedachter Ritter sich begeben ...
Resumo:
The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Background and aims: In HFE associated hereditary haemochromatosis, the duodenal enterocyte behaves as if iron deficient and previous reports have shown increased duodenal expression of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (Ireg1) in affected subjects. In those studies, many patients had undergone venesection, which is a potent stimulus of iron absorption. Our study investigated duodenal expression of DMT1 ( IRE and non-IRE), Ireg1, hephaestin, and duodenal cytochrome-b (Dyctb) in untreated C282Y homozygous haemochromatosis patients, iron deficient patients, and iron replete subjects. Methods: Total RNA was extracted from duodenal biopsies and expression of the iron transport genes was assessed by ribonuclease protection assay. Results: Expression of DMT1 ( IRE) and Ireg1 was increased 3 - 5-fold in iron deficient subjects compared with iron replete subjects. Duodenal expression of DMT1 ( IRE) and Ireg1 was similar in haemochromatosis patients and iron replete subjects but in haemochromatosis patients with elevated serum ferritin concentrations, both DMT1 ( IRE) and Ireg1 expression were inappropriately increased relative to serum ferritin concentration. Hephaestin and Dcytb levels were not upregulated in haemochromatosis. DMT1 ( IRE) and Ireg1 levels showed significant inverse correlations with serum ferritin concentration in each group of patients. Conclusions: These findings are consistent with DMT1 ( IRE) and Ireg1 playing primary roles in the adaptive response to iron deficiency. Untreated haemochromatosis patients showed inappropriate increases in DMT1 ( IRE) and Ireg1 expression for a given level of serum ferritin concentration, although the actual level of expression of these iron transport genes was not significantly different from that of normal subjects.
Resumo:
Background. Hereditary hemochromatosis is an autosomal recessive disorder of iron metabolism that is characterized by excess accumulation of iron in various organs and often leads to diabetes mellitus (DM). To study whether mutations in the hemochromatosis gene (HFE) could be a risk factor for the development of gestational diabetes mellitus (GDM), the prevalence of HFE mutations in patients with GDM was compared to that of healthy pregnant controls. Methods: GDM was diagnosed in 208 of 2,421 pregnant woman screened between the 24th and 28th week of gestation over a period of 18 months. Patients and 170 matched control subjects were screened for the HFE gene mutations C282Y and H63D. Results: In North and Central European GDM patients, the allele frequency of the C282Y mutation (7.7%) was higher than in pregnant controls (2.9%; p = 0.04), while the frequency of the H63D mutation was not different (p = 0.45). Three patients with GDM were homozygous for H63D (3.1%), 1 patient was homozygous for C282Y (1.0%), 2 patients were compound heterozygous (2.0%) and 26 were heterozygous [11 C282Y (11.2%) and 15 H63D (15.3%)]. C282Y and H63D allele frequencies were not different between controls and GDIVI patients of Southern European or non-European origin. Irrespective of the HIFE-mutation status, serum ferritin levels were increased in patients with GDM compared to healthy pregnant controls (p = 0.01), while transferrin saturation was similar in both groups. Conclusions: In North and Central European patients with GDM, the C282Y allele frequency is higherthan in healthy pregnant women, suggesting a genetic susceptibility to the development of GDM. Copyright (c) 2005 S. Karger AG, Basel.
Resumo:
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.