971 resultados para Foundation design
Resumo:
The guided modes of a two-dimensional photonic crystal straight waveguide and a waveguide bend are studied in order to find the high transmission mechanism for the waveguide bend. We find that high transmission occurs when the mode patterns and wave numbers match, while the single-mode condition in the waveguide bend is not necessarily required. According to the mechanism, a simply modified bend structure with broad high transmission band is proposed. The bandwidth is significantly increased from 19 to 116 nm with transmission above 90%, and covers the entire C band of optical communication.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al0.3Ga0.7N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al0.3Ga0.7N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al0.3Ga0.7N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0 degrees to 60 degrees.
Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating
Resumo:
A new triplexing filter based on a silica direction coupler and an arrayed waveguide grating is presented. Using a combination of a direction coupler and an arrayed waveguide grating, a 1310-nm channel is multiplexed and 1490- and 1550-nm channels are demultiplexed for fiber-to-the-home. The direction coupler is used to coarsely separate the 1310-nm channel from the 1490- and 1550-nm channels. Subsequently, an arrayed waveguide grating is used to demultiplex the 1490- from 1550-nm channel. The simulated spectra show the 1-dB bandwidth of 110 nm for the 1310-nm channel and 20 and 20.5 nm for the 1490- and 1550-nm channels. The insertion loss is only 0.15 dB for 1310 nm and 5 dB for 1490 and 1550 nm. The crosstalk between the 1490- and 1550-nm channels was less than -35 dB. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3065508]
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity
Resumo:
To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.
Resumo:
An efficient polarization splitter based on a microracetrack resonator in silicon-on-insulator has been designed and realized using electron beam lithography and inductively coupled plasma etching. Polarization-dependent waveguides and the microracetrack resonator are combined and exploited to split two orthogonal polarizations. Rib waveguides are employed to enhance the coupling efficiency for the transverse-electric mode and endow the resonator with high performance for both polarizations. In experiments, a splitting ratio has been achieved of about 20 dB at the drop port around 1550 nm for each extracted polarization, in good agreement with the prediction.
Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells
Resumo:
Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America
Resumo:
The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.
Resumo:
Optoelectronic packaging has become a most important factor that influences the final performance and cost of the module. In this paper, low microwave loss coplanar waveguide(CPW) on high resistivity silicon(HRS) and precise V groove in silicon substrate were successfully fabricated. The microwave attenuation of the CPW made on HRS with the simple process is lower than 2 dB/cm in the frequency range of 0 similar to 26GHz, and V groove has the accuracy in micro level and smooth surface. These two techniques built a good foundation for high frequency packaging and passive coupling of the optoelectronic devices. Based on these two techniques, a simple high resistivity silicon substrate that integrated V groove and CPW for flip-chip packaging of lasers was completed. It set a good example for more complicate optoelectronic packaging.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
Resumo:
The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.
Resumo:
A complex-coupled DFB laser with sampled grating has been designed and fabricated. The method uses the + 1 st order reflection of the sampled grating for laser single-mode operation. The typical threshold current of the sampled grating based DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5385μm, which is the +1 st order wavelength of the sampled grating.
Resumo:
Slow-light effects in photonic crystal (PC) waveguides can enhance light-mater interaction near the photonic band edge, which can be used to design a short cavity length semiconductor optical amplifier (SOA). In this paper, a novel SOA based on slow-light effects in PC waveguides (PCSOA) is presented. To realize the amplification of the optical signal with polarization independence, a PCSOA is designed with a compensated structure. The cascaded structure leads to a balanced amplification to the TE and TM polarized light.
Resumo:
Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.