901 resultados para Formal Methods. Component-Based Development. Competition. Model Checking
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2012
Resumo:
The development of model observers for mimicking human detection strategies has followed from symmetric signals in simple noise to increasingly complex backgrounds. In this study we implement different model observers for the complex task of detecting a signal in a 3D image stack. The backgrounds come from real breast tomosynthesis acquisitions and the signals were simulated and reconstructed within the volume. Two different tasks relevant to the early detection of breast cancer were considered: detecting an 8 mm mass and detecting a cluster of microcalcifications. The model observers were calculated using a channelized Hotelling observer (CHO) with dense difference-of-Gaussian channels, and a modified (Partial prewhitening [PPW]) observer which was adapted to realistic signals which are not circularly symmetric. The sustained temporal sensitivity function was used to filter the images before applying the spatial templates. For a frame rate of five frames per second, the only CHO that we calculated performed worse than the humans in a 4-AFC experiment. The other observers were variations of PPW and outperformed human observers in every single case. This initial frame rate was a rather low speed and the temporal filtering did not affect the results compared to a data set with no human temporal effects taken into account. We subsequently investigated two higher speeds at 5, 15 and 30 frames per second. We observed that for large masses, the two types of model observers investigated outperformed the human observers and would be suitable with the appropriate addition of internal noise. However, for microcalcifications both only the PPW observer consistently outperformed the humans. The study demonstrated the possibility of using a model observer which takes into account the temporal effects of scrolling through an image stack while being able to effectively detect a range of mass sizes and distributions.
Resumo:
Multimedia-sanomanvälityspalvelu (MMS) on matkapuhelinten väliseen viestintään kehitetty palvelu, joka mahdollistaa yhteyden Internet maailmaan. Multimedia-sanomanvälityspalvelua voidaan käyttää luomaan yhteys matkapuhelimen käyttäjän ja ulkoisen sovelluspalvelimen välille. MMS voidaan nähdä sovelluksena, joka yhdistää multimediaviestin luonnin, käsittelyn sekä toimituksen monelle eri sisältö tyypille. Multimedia-viestikeskus (MMSC) on uusi verkkoelementti, joka on vastuussa multimediaviestien varastoinnista ja toimituksesta. Multimedia-viestikeskuksella on kolme loogista elementtiä, jotka ovat välityspalvelin, sovellusrajapinnat ja matkapuhelinverkkorajapinta. Operaattorit sekä kolmannen osapuolen sovelluskehittäjät voivat kehittää lisäarvopalveluita multimedia-sanomanvälityspalvelulle hyödyntämällä sovellusrajapintoja. Sovellusrajapinnat perustuvat olemassa oleviin Internet protokolliin. Tämä diplomityö tutkii Multimedia-sanomanvälityspalvelun verkkoelementtien rajapintoja. Tulevaisuudessa on tarkoitus lisätä Multimedia-sanomanvälityspalvelun verkkoelementtejä sähköisen kaupankäynnin kehysarkkitehtuuriin, joka perustuu komponentteihin.
Resumo:
We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.
Resumo:
The paper attempts to explore the interrelation between a) the architects’ individualism and “pre-structures” b) research- based findings during the design process through experimentation and c)an integrated design approach, where morphology, construction and bioclimatic design are integrated from an early design stage. Through a thorough presentation and analysis of a competition proposal for the Cyprus News Agency, we discuss a number of important findings in relation to the present and possibly future form of the design studio. We suggest that the designer’s “prestructures” may not only be the basis for creative action, but also the basis for understanding and interpretation. Design informed and enriched at every stage by a research-based process, might well be the transmission and transformation of “prestructures”, a process of elaboration and discovery which facilitates and enhances design creativity and possibly allows for a multiplicity of approaches through a range of possibilities. Furthermore, an integrated approach from the early stages of the design process facilitates innovation in materials and systems.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF) and an ensemble transform Kalman smoother (ETKS) on the Lorenz 1963 model. We specifically investigated this performance with increasing nonlinearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE) as a metric, these methods have been compared considering (1) assimilation window length and observation interval size and (2) ensemble size to investigate the influence of hybrid background error covariance matrices and nonlinearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which nonlinear dynamics are substantial, the variational framework can have diffculties fnding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most nonlinearity.
Resumo:
This paper uses examples from a Swedish study to suggest some ways in which cultural variation could be included in studies of thermal comfort. It is shown how only a slight shift of focus and methodological approach could help us discover aspects of human life that add to previous knowledge within comfort research of how human beings perceive and handle warmth and cold. It is concluded that it is not enough for buildings, heating systems and thermal control devices to be energy-efficient in a mere technical sense. If these are to help to decrease, rather than to increase, energy consumption, they have to support those parts of already existing habits and modes of thought that have the potential for low energy use. This is one reason why culture-specific features and emotional cores need to be investigated and deployed into the study and development of thermal comfort.