985 resultados para Forest biodiversity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

''Ecosystem people'' of the world subsist by producing or gathering a diversity of biological resources from their immediate vicinity. Their quality of life is intimately linked to the maintenance of modest levels of biodiversity in their own circumscribed resource catchments. Their resource base has been extensively degraded by pressures created by ''biosphere people''; i.e. the Third World elite and citizens of industrial countries, who can draw resources from all over the world and are thus, indifferent to environmental degradation in the Third World. Because ''ecosystem people'' have a genuine stake in biodiversity maintenance in their immediate surrounding, it is important that conservation efforts include maintenance and restoration of at least modest levels of biodiversity throughout the Third World. In the case of India this may be achieved by (a) dedicating the bulk of reserve forests to production of nontimber forest produce (NTFP), to support rural economy; (b) organizing effective community-based management systems to fulfill subsistence biomass requirements of peasants and tribals; (c) encouraging a switchover from shifting cultivation to horticulture; (d) supporting traditional practices of growing a variety of plant species, including keystone resources like Ficus spp, in rural habitats and on roadsides, farm and canal bunds; and (e) promoting tree farming on private lands to fulfill commercial needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal endophytes of tropical trees are expected to be exceptionally species rich as a consequence of high tree diversity in the tropics and the purported host restriction among the endophytes. Based on this premise, endophytes have been regarded as a focal group for estimating fungal numbers because their possible hyperdiverse nature would reflect significantly global fungal diversity. We present our consolidated ten-year work on 75 dicotyledonous tree hosts belonging to 33 families and growing in three different types of tropical forests of the NBR in the Western Ghats, southern India. We conclude that endophyte diversity in these forests is limited due to loose host affiliations among endophytes. Some endophytes have a wide host range and colonize taxonomically disparate hosts suggesting adaptations in them to counter a variety of defense chemicals in their hosts. Furthermore, such polyphagous endophytes dominate the endophyte assemblages of different tree hosts. Individual leaves may be densely colonized but only by a few endophyte species. It appears that the environment (the type of forest in this case) has a larger role in determining the endophyte assemblage of a plant host than the taxonomy of the host plant. Thus, different tropical plant communities have to be studied for their endophyte diversity to test the generalization that endophytes are hyperdiverse in the tropics, estimate their true species richness, and use them as a predictor group for more accurate assessment of global fungal diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endangering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying temporal remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) curves. The LU information thus derived was then used to assess spatial changes from temporal data using principal component analysis and correspondence analysis based image differencing. The forest area dynamics was further studied by analysing the different types of fragmentation through forest fragmentation models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests with a substantial increase in patch forest during 1972-2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents data on the impact of biotic pressure in terms of grazing by livestock and wood cutting by humans on the plant community in the Nilgiri Biosphere Reserve of India. Grass, and herbaceous plant biomass, number of cattle dung piles, number of woody stems available and damaged by human activities and weed biomass were assessed at different proximity along transects radiating from village-forest boundary to forest interior to measure the ecological impact of livestock grazing and fire wood collection. The grass biomass was positively correlated to overgrazing indicating the adverse effect on natural vegetation by cattle. Woodcutting was intense along the forest boundary and significantly declined as distance increased. Similarly, weed biomass and number of thorny species declined positively with proximity from village-forest boundary and the weed biomass was significantly higher in the pastoral sites compared to residential sites. The results suggest that human impact adversely affects natural vegetation and promotes weed proliferation in forest areas adjoining human settlements in the ecologically important Nilgiri Biosphere Reserve. Continued anthropogenic pressure could cause reduction in fodder availability to large herbivores like elephants, which in turn leads to an increase in human-elephant conflict. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic estimation, monitoring and reporting on area under forest and plantation types and afforestation rates are critical to forest and biodiversity conservation, sustainable forest management and for meeting international commitments. This article is aimed at assessing the adequacy of the current monitoring and reporting approach adopted in India in the context of new challenges of conservation and reporting to international conventions and agencies. The analysis shows that the current mode of monitoring and reporting of forest area is inadequate to meet the national and international requirements. India could be potentially over-reporting the area under forests by including many non-forest tree categories such as commercial plantations of coconut, cashew, coffee and rubber, and fruit orchards. India may also be under-reporting deforestation by reporting only gross forest area at the state and national levels. There is a need for monitoring and reporting of forest cover, deforestation and afforestation rates according to categories such as (i) natural/primary forest, (ii) secondary/degraded forests, (iii) forest plantations, (iv) commercial plantations, (v) fruit orchards and (vi) scattered trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka. A total of 106 bats were caught over 108 sampling nights, representing 17 species, 3 belonging to Megachiroptera and 14 to Microchiroptera. Acoustical and roost surveys added three more species, two from Microchiroptera and one from Megachiroptera. Of these 20 species, 4 belonged to the family Pteropodidae, 10 to Vespertilionidae, 3 to Rhinolophidae, 2 to Megadermatidae and 1 to Hipposideridae. We recorded the echolocation calls of 13 of the 16 microchiropteran species, of which the calls of 4 species (Pipistrellus coromandra, Pipistrellus affinis, Pipistrellus ceylonicus and Harpiocephalus harpia) have been recorded for the first time. Discriminant function analyses of the calls of 11 species provided 91.7% correct classification of individuals to their respective species, indicating that the echolocation calls could be used successfully for non-invasive acoustic surveys and monitoring of bat species in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates in the world, confined to mature natural forest in Hainan Island, China. We assessed changes in habitat condition on the island between 1991 and 2008, using vegetation maps generated by remote-sensing images. We defined forest suitable for gibbons based on composition, tree size and canopy cover. During the 17-year period, the area of suitable gibbon forest decreased by 540 km(2) (35%) across the whole island, and by 6.3 km(2) (7%) in the locality of the sole remaining gibbon population at Bawangling National Nature Reserve. The forest patches large enough (>1 km(2)) to support a gibbon group decreased from 754 km(2) to 316 km(2) in total area, and from 92 to 64 in number. Suitable natural forest was mainly replaced by plantations below 760 m, or degraded by logging, grazing and planting of pines above 760 m. Meanwhile, forests in former confirmed gibbon areas became more fragmented: mean area of patches decreased by 53%. We mapped the patches of natural forest in good condition which could potentially support gibbons. We recommend a freeze on further expansion of plantations between core patches at Bawangling, Jiaxi-Houmiling and Yinggeling Nature Reserves in accordance with forest protection regulations; establishment of nature reserves in currently unprotected natural forest patches elsewhere in line with the local government's nature reserve expansion policy; and active natural-forest restoration between remaining fragments at Bawangling. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Natural Science Foundation of China [30590381, 30670384]; Knowledge Innovation Project of the Chinese Academy of Sciences [KZCX2-YW-432]; National Key Research and Development Program [2002CB412501]; 'Hundred Talents' Program of the Chinese Acade

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MURAWSKI AND COLLEAGUES STATE THAT OUR assessment of the impacts of global marine biodiversity loss is overly pessimistic. They imply that management interventions are likely to reverse current trends of overfishing, and that the U.S. National Marine Fisheries Service (NMFS) has already met that goal. They cite Georges Bank haddock as an example and contest that catch metrics (as used in our global analysis) are sufficient to track the status of this particular fish stock and possibly others. We agree that precise biomass data are preferable, but these are rarely available. Here, we illustrate that catches are a good proxy of the status of haddock, although there can be a short delay in detecting recovery under intense management. While NMFS’s own data show that full recovery is still uncommon (<5% of overfished stocks) (1), we strongly agree that destructive trends can be turned around and that rebuilding efforts need to be intensified to meet that goal. But we must not miss the forest for the trees: Continuing focus on single, well-assessed, economically viable species will leave most of the ocean’s declining biodiversity under the radar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.