916 resultados para Forecast accuracy
Resumo:
The accuracy of marker placement on palpable surface anatomical landmarks is an important consideration in biomechanics. Although marker placement reliability has been studied in some depth, it remains unclear whether or not the markers are accurately positioned over the intended landmark in order to define the static position and orientation of the segment. A novel method using commonly available X-ray imaging was developed to identify the accuracy of markers placed on the shoe surface by palpating landmarks through the shoe. An anterior–posterior and lateral–medial X-ray was taken on 24 participants with a newly developed marker set applied to both the skin and shoe. The vector magnitude of both skin- and shoe-mounted markers from the anatomical landmark was calculated, as well as the mean marker offset between skin- and shoe-mounted markers. The accuracy of placing markers on the shoe relative to the skin-mounted markers, accounting for shoe thickness, was less than 5mm for all markers studied. Further, when using the developed guidelines provided in this study, the method was deemed reliable (Intra-rater ICCs¼0.50–0.92). In conclusion, the method proposed here can reliably assess marker placement accuracy on the shoe surface relative to chosen anatomical landmarks beneath the skin.
Resumo:
Introduction The suitability of video conferencing (VC) technology for clinical purposes relevant to geriatric medicine is still being established. This project aimed to determine the validity of the diagnosis of dementia via VC. Methods This was a multisite, noninferiority, prospective cohort study. Patients, aged 50 years and older, referred by their primary care physician for cognitive assessment, were assessed at 4 memory disorder clinics. All patients were assessed independently by 2 specialist physicians. They were allocated one face-to-face (FTF) assessment (Reference standard – usual clinical practice) and an additional assessment (either usual FTF assessment or a VC assessment) on the same day. Each specialist physician had access to the patient chart and the results of a battery of standardized cognitive assessments administered FTF by the clinic nurse. Percentage agreement (P0) and the weighted kappa statistic with linear weight (Kw) were used to assess inter-rater reliability across the 2 study groups on the diagnosis of dementia (cognition normal, impaired, or demented). Results The 205 patients were allocated to group: Videoconference (n = 100) or Standard practice (n = 105); 106 were men. The average age was 76 (SD 9, 51–95) and the average Standardized Mini-Mental State Examination Score was 23.9 (SD 4.7, 9–30). Agreement for the Videoconference group (P0= 0.71; Kw = 0.52; P < .0001) and agreement for the Standard Practice group (P0= 0.70; Kw = 0.50; P < .0001) were both statistically significant (P < .05). The summary kappa statistic of 0.51 (P = .84) indicated that VC was not inferior to FTF assessment. Conclusions Previous studies have shown that preliminary standardized assessment tools can be reliably administered and scored via VC. This study focused on the geriatric assessment component of the interview (interpretation of standardized assessments, taking a history and formulating a diagnosis by medical specialist) and identified high levels of agreement for diagnosing dementia. A model of service incorporating either local or remote administered standardized assessments, and remote specialist assessment, is a reliable process for enabling the diagnosis of dementia for isolated older adults.
Resumo:
A new system is described for estimating volume from a series of multiplanar 2D ultrasound images. Ultrasound images are captured using a personal computer video digitizing card and an electromagnetic localization system is used to record the pose of the ultrasound images. The accuracy of the system was assessed by scanning four groups of ten cadaveric kidneys on four different ultrasound machines. Scan image planes were oriented either radially, in parallel or slanted at 30 C to the vertical. The cross-sectional images of the kidneys were traced using a mouse and the outline points transformed to 3D space using the Fastrak position and orientation data. Points on adjacent region of interest outlines were connected to form a triangle mesh and the volume of the kidneys estimated using the ellipsoid, planimetry, tetrahedral and ray tracing methods. There was little difference between the results for the different scan techniques or volume estimation algorithms, although, perhaps as expected, the ellipsoid results were the least precise. For radial scanning and ray tracing, the mean and standard deviation of the percentage errors for the four different machines were as follows: Hitachi EUB-240, −3.0 ± 2.7%; Tosbee RM3, −0.1 ± 2.3%; Hitachi EUB-415, 0.2 ± 2.3%; Acuson, 2.7 ± 2.3%.
Resumo:
In recent years, a number of phylogenetic methods have been developed for estimating molecular rates and divergence dates under models that relax the molecular clock constraint by allowing rate change throughout the tree. These methods are being used with increasing frequency, but there have been few studies into their accuracy. We tested the accuracy of several relaxed-clock methods (penalized likelihood and Bayesian inference using various models of rate change) using nucleotide sequences simulated on a nine-taxon tree. When the sequences evolved with a constant rate, the methods were able to infer rates accurately, but estimates were more precise when a molecular clock was assumed. When the sequences evolved under a model of autocorrelated rate change, rates were accurately estimated using penalized likelihood and by Bayesian inference using lognormal and exponential models of rate change, while other models did not perform as well. When the sequences evolved under a model of uncorrelated rate change, only Bayesian inference using an exponential rate model performed well. Collectively, the results provide a strong recommendation for using the exponential model of rate change if a conservative approach to divergence time estimation is required. A case study is presented in which we use a simulation-based approach to examine the hypothesis of elevated rates in the Cambrian period, and it is found that these high rate estimates might be an artifact of the rate estimation method. If this bias is present, then the ages of metazoan divergences would be systematically underestimated. The results of this study have implications for studies of molecular rates and divergence dates.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
Objectives The relationship between performance variability and accuracy in cricket fast bowlers of different skill levels under three different task conditions was investigated. Bowlers of different skill levels were examined to observe if they could adapt movement patterns to maintain performance accuracy on a bowling skills test. Design 8 national, 12 emerging and 12 junior pace bowlers completed an adapted version of the Cricket Australia bowling skills test, in which they performed 30 trials involving short (n = 10), good (n = 10), and full (n = 10) length deliveries. Methods Bowling accuracy was recorded by digitising ball position relative to the centre of a target. Performance measures were mean radial error (accuracy), variable error (consistency), centroid error (bias), bowling score and ball speed. Radial error changes across the duration of the skills test were used to record accuracy adjustment in subsequent deliveries. Results Elite fast bowlers performed better in speed, accuracy, and test scores than developing athletes. Bowlers who were less variable were also more accurate across all delivery lengths. National and emerging bowlers were able to adapt subsequent performance trials within the same bowling session for short length deliveries. Conclusions Accuracy and adaptive variability were key components of elite performance in fast bowling which improved with skill level. In this study, only national elite bowlers showed requisite levels of adaptive variability to bowl a range of lengths to different pitch locations.
Resumo:
One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.
Resumo:
This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.
Resumo:
A fundamental proposition is that the accuracy of the designer's tender price forecasts is positively correlated with the amount of information available for that project. The paper describes an empirical study of the effects of the quantity of information available on practicing Quantity Surveyors' forecasting accuracy. The methodology involved the surveyors repeatedly revising tender price forecasts on receipt of chunks of project information. Each of twelve surveyors undertook two projects and selected information chunks from a total of sixteen information types. The analysis indicated marked differences in accuracy between different project types and experts/non-experts. The expert surveyors' forecasts were not found to be significantly improved by information other than that of basic building type and size, even after eliminating project type effects. The expert surveyors' forecasts based on the knowledge of building type and size alone were, however, found to be of similar accuracy to that of average practitioners pricing full bills of quantities.
Resumo:
Emerging sciences, such as conceptual cost estimating, seem to have to go through two phases. The first phase involves reducing the field of study down to its basic ingredients - from systems development to technological development (techniques) to theoretical development. The second phase operates in the direction in building up techniques from theories, and systems from techniques. Cost estimating is clearly and distinctly still in the first phase. A great deal of effort has been put into the development of both manual and computer based cost estimating systems during this first phase and, to a lesser extent, the development of a range of techniques that can be used (see, for instance, Ashworth & Skitmore, 1986). Theoretical developments have not, as yet, been forthcoming. All theories need the support of some observational data and cost estimating is not likely to be an exception. These data do not need to be complete in order to build theories. As it is possible to construct an image of a prehistoric animal such as the brontosaurus from only a few key bones and relics, so a theory of cost estimating may possibly be found on a few factual details. The eternal argument of empiricists and deductionists is that, as theories need factual support, so do we need theories in order to know what facts to collect. In cost estimating, the basic facts of interest concern accuracy, the cost of achieving this accuracy, and the trade off between the two. When cost estimating theories do begin to emerge, it is highly likely that these relationships will be central features. This paper presents some of the facts we have been able to acquire regarding one part of this relationship - accuracy, and its influencing factors. Although some of these factors, such as the amount of information used in preparing the estimate, will have cost consequences, we have not yet reached the stage of quantifying these costs. Indeed, as will be seen, many of the factors do not involve any substantial cost considerations. The absence of any theory is reflected in the arbitrary manner in which the factors are presented. Rather, the emphasis here is on the consideration of purely empirical data concerning estimating accuracy. The essence of good empirical research is to .minimize the role of the researcher in interpreting the results of the study. Whilst space does not allow a full treatment of the material in this manner, the principle has been adopted as closely as possible to present results in an uncleaned and unbiased way. In most cases the evidence speaks for itself. The first part of the paper reviews most of the empirical evidence that we have located to date. Knowledge of any work done, but omitted here would be most welcome. The second part of the paper presents an analysis of some recently acquired data pertaining to this growing subject.
Resumo:
Several methods of estimating the costs or price of construction projects are now available for use in the construction industry. It is difficult due to the conservative approach of estimators and quantity surveyors, and the fact that the industry is undergoing one of its deepest recessions this century, to implement any changes in these processes. Several methods have been tried and tested and probably discarded forever, whereas other methods are still in their infancy. There is also a movement towards greater use of the computer, whichever method seems to be adopted. An important consideration with any method of estimating is the accuracy by which costs can be calculated. Any improvement in this consideration will be welcomed by a11 parties, because existing methods are poor when measured by this criteria. Estimating, particularly by contractors, has always carried some mystic, and many of the processes discussed both in the classroom and in practice are little more than fallacy when properly investigated. What makes an estimator or quantity surveyor good at forecasting the right price? To what extent does human behaviour influence or have a part to play? These and some of the other aspects of effective estimating are now examined in more detail.