985 resultados para Force platform
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.
Resumo:
Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.
Resumo:
Les modèles animaux d’arthrose permettent d’évaluer le potentiel d’agents thérapeutiques en phase préclinique de développement. Le présent ouvrage tient compte du chien comme modèle d’arthrose naturelle (chez l’animal de compagnie) ou expérimentale (par sectionnement chirurgical du ligament croisé crânial). Au sein des expérimentations, la force de réaction au sol verticale maximale, mesurée lors de l’analyse cinétique de la locomotion, est proposée comme témoin d’effets fonctionnels et structuraux sur ces modèles d’arthrose. Sur un modèle canin d’arthrose naturelle, le seuil de changement minimal détectable a été déterminé. Les changements au dysfonctionnement locomoteur peuvent désormais être cernés en s’affranchissant de la marge d’erreur inhérente à la mesure de la force verticale maximale. Il en découle l’identification de répondants lors d’essais cliniques entrepris chez le chien arthrosique. Une analyse rétrospective a, par la suite, déterminé un taux de répondants de 62.8% et d’une taille d’effet de 0.7 pour des approches thérapeutiques actuellement proposées aux chiens arthrosiques. Cette analyse détermina également que la démonstration d’une réponse thérapeutique était favorisée en présence d’un fort dysfonctionnement locomoteur. Sur un modèle canin d’arthrose par sectionnement chirurgical du ligament croisé crânial, la force verticale maximale a démontré une relation inverse avec certains types de lésions arthrosiques évaluées à l’aide d’imagerie par résonance magnétique. Également, la sensibilité de la force verticale maximale a été mise en évidence envers la détection d’effets structuraux, au niveau de l’os sous-chondral, par un agent anti-résorptif (le tiludronate) sur ce même modèle. Les expérimentations en contexte d’arthrose naturelle canine permettent de valider davantage les résultats d’essais cliniques contrôlés utilisant la force verticale maximale comme critère d’efficacité fonctionnelle. Des évidences cliniques probantes nécessaires à la pratique d’une médecine basée sur des faits sont ainsi escomptées. En contexte d’arthrose expérimentale, la pertinence d’enregistrer le dysfonctionnement locomoteur est soulignée, puisque ce dernier est en lien avec l’état des structures. En effectuant l’analyse de la démarche, de pair avec l’évaluation des structures, il est escompté de pouvoir établir la répercussion de bénéfices structurels sur l’inconfort articulaire. Cet ouvrage suggère qu’une plateforme d’investigations précliniques, qui combine le modèle canin d’arthrose par sectionnement chirurgical du ligament croisé crânial à un essai clinique chez le chien arthrosique, soit un moyen de cerner des bénéfices structuraux ayant des impacts fonctionnels. Le potentiel inférentiel de ces modèles canins d’arthrose vers l’Homme serait ainsi favorisé en utilisant la force verticale maximale.
Resumo:
An experimental study on Vortex-Induced Motion (VIM) of the semi-submersible platform concept with four square columns is presented. Model tests were carried out to check the influence of different headings and hull appendages (riser supports located at the pontoons; fairleads and the mooring stretches located vertically at the external column faces; and hard pipes located vertically at the internal column faces). The results comprise in-line, transverse and yaw motions, as well as combined motions in the XY plane, drag and lift forces and spectral analysis. The main results showed that VIM in the transverse direction occurred in a range of reduced velocity 4.0 up to 14.0 with amplitude peaks around reduced velocities around 7.0 and 8.0. The largest transverse amplitudes obtained were around 40% of the column width for 30 degrees and 45 degrees incidences. Another important result observed was a considerable yaw motion oscillation, in which a synchronization region could be identified as a resonance phenomenon. The largest yaw motions were verified for the 0 degrees incidence and the maxima amplitudes around 4.5 degrees. The hull appendages located at columns had the greatest influence on the VIM response of the semi-submersible. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This Task Force report combines the most recent data from Eurostat with national sources to highlight the most significant labour mobility trends within the EU. Overall, the recent recession has not induced previously immobile workers to become more mobile, at least not in the larger member states. Mobility flows have moved away from crisis countries in response to the economic downturn but the desired increase in south-north mobility has not been observed so far. This leads the authors to conclude that successfully fostering mobility within EU15 countries requires tremendous effort. It is important that workers who are willing and able to move are not discouraged from doing so by unnecessary barriers to mobility. Improving the workings of the EURES system and its online job-matching platform; better cooperation of national employment agencies; streamlining the recognition of qualifications; and supporting language training within the EU are important contributions to labour mobility. The authors conclude that the EU is right to defend the free movement of workers. National governments should keep in mind that their ability to tap into an attractive foreign labour supply also hinges upon the perception of how mobile workers are treated in destination countries. If the political imperative requires regulations to be changed, such as the one guiding the coordination of social security, it is essential that no new mobility barriers are put in place.
Resumo:
This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.
Resumo:
The present research is carried out from the viewpoint of primarily space applications where human lives may be in danger if they are to work under these conditions. This work proposes to develop a one-degree-of-freedom (1-DOF) force-reflecting manual controller (FRMC) prototype for teleoperation, and address the effects of time delays commonly found in space applications where the control is accomplished via the earth-based control stations. To test the FRMC, a mobile robot (PPRK) and a slider-bar were developed and integrated to the 1-DOF FRMC. The software developed in Visual Basic is able to telecontrol any platform that uses an SV203 controller through the internet and it allows the remote system to send feedback information which may be in the form of visual or force signals. Time delay experiments were conducted on the platform and the effects of time delay on the FRMC system operation have been studied and delineated.
Resumo:
International audience