957 resultados para Force field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general kind of Brownian vortices is demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provides enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, and we infer that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently three different experimental studies on ultrafast solvation dynamics in monohydroxy straight-chain alcohols (C-1-C-4) have been carried out, with an aim to quantify the time constant (and the amplitude) of the ultrafast component. The results reported are, however, rather different from different experiments. In order to understand the reason for these differences, we have carried out a detailed theoretical study to investigate the time dependent progress of solvation of both an ionic and a dipolar solute probe in these alcohols. For methanol, the agreement between the theoretical predictions and the experimental results [Bingemann and Ernsting J. Chem. Phys. 1995, 102, 2691 and Horng et al. J: Phys, Chern, 1995, 99, 17311] is excellent. For ethanol, propanol, and butanol, we find no ultrafast component of the time constant of 70 fs or so. For these three liquids, the theoretical results are in almost complete agreement with the experimental results of Horng et al. For ethanol and propanol, the theoretical prediction for ionic solvation is not significantly different from that of dipolar solvation. Thus, the theory suggests that the experiments of Bingemann and Ernsting and those of Horng et al. studied essentially the polar solvation dynamics. The theoretical studies also suggest that the experimental investigations of Joo et al. which report a much faster and larger ultrafast component in the same series of solvents (J. Chem. Phys. 1996, 104, 6089) might have been more sensitive to the nonpolar part of solvation dynamics than the polar part. In addition, a discussion on the validity of the present theoretical approach is presented. In this theory the ultrafast component arises from almost frictionless inertial motion of the individual solvent molecules in the force field of its neighbors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dinuclear organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(O(3)SCF(3))(ethynyl)]biphenyl (1) containing Pt-ethynyl functionality is synthesized. Multinuclear NMR ((1)H, (31)P, and (13)C), infrared (IR), and electrospray ionization mass spectrometry (ESI-MS) including single-crystal X-ray diffraction analysis established the formation of 1. Equimolar treatment of acceptor 1 separately with three different ``clip'' type ditopic donors (L(a)-L(c)) yielded [2 + 2] self-assembled three metallamacrocycles 2a-2c, respectively. These macrocycles were characterized by various spectroscopic techniques, and their sizes/shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) simulations. Attachment of unsaturated ethynyl functionality to biphenyl building unit helped to make the macrocycles (2a-2c) pi-electron rich and thereby fluorescent in nature. Furthermore, 2c in solution has been examined to be suitable for sensing electron-deficient nitroaromatic like picric acid, which is often considered as a secondary chemical explosive. The fluorescence study of 2c showed a marked quenching of initial emission intensity upon titrating with picric acid (PA), and it exhibited the largest fluorescence quenching response with high selectivity among various other electron deficient aromatic compounds tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Template-assisted formation of multicomponent Pd6 coordination prisms and formation of their self-templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd?N/Pd?O coordination. Treatment of cis-[Pd(en)(NO3)2] with K3tma and linear pillar 4,4'-bpy (en=ethylenediamine, H3tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 (1) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma-encapsulating non-interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 (2). Though the same reaction using cis-[Pd(NO3)2(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 (3) along with non-interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 (3'), and the presence of H3tma as a guest gave H3tma-encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO3)2(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO3)2(pn)] gave non-interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report gas phase mid-infrared spectra of 1- and 2- methyl naphthalenes at 0.2 cm(-1) resolution. Assignment of observed bands have been made using scaled quantum mechanical (SQM) calculations where the force fields rather the frequencies are scaled to find a close fit between observed and calculated bands. The structure of the molecules has been optimized using B3LYP level of theory in conjunction with standard 6-311G** basis set to obtain the harmonic frequencies. Using the force constants in Cartesian coordinates from the Gaussian output, scaled force field calculations are carried out using a modified version of the UMAT program in the QCPE package. Potential energy distributions of the normal modes obtained from such calculations helped us assign the observed bands and identify the unique features of the spectra of 1- and 2-MNs which are important for their isomeric identification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared spectra of atmospherically and astronomically important dimethylphenanthrenes (DMPs), namely 1,9-DMP, 2,4-DMP, and 3,9-DMP, were recorded in the gas phase from 400 to 4000 cm(-1) with a resolution of 0.5 cm(-1) at 110 degrees C using a 7.2 m gas cell. DFT calculations at the B3LYP/6-311G** level were carried out to get the harmonic and anharmonic frequencies and their corresponding intensities for the assignment of the observed bands. However, spectral assignments could not be made unambiguously using anharmonic or selectively scaled harmonic frequencies. Therefore, the scaled quantum mechanical (SQM) force field analysis method was adopted to achieve more accurate assignments. In this method force fields instead of frequencies were scaled. The Cartesian force field matrix obtained from the Gaussian calculations was converted to a nonredundant local coordinate force field matrix and then the force fields were scaled to match experimental frequencies in a consistent manner using a modified version of the UMAT program of the QCPE package. Potential energy distributions (PEDs) of the normal modes in terms of nonredundant local coordinates obtained from these calculations helped us derive the nature of the vibration at each frequency. The intensity of observed bands in the experimental spectra was calculated using estimated vapor pressures of the DMPs. An error analysis of the mean deviation between experimental and calculated intensities reveal that the observed methyl C-H stretching intensity deviates more compared to the aromatic C-H and non C-H stretching bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. (c) 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate the effect of core-shell structure of Sodium Alginate based hydrogel beads and their size on certain activation threshold concentration of water for applications in swelling and pH sensing. This type of hydrogel experiences diffusive pressure due to transport of certain free charges across its interface with a solvent or electrolyte. This process is essentially a dynamic equilibrium of the electric force field, stress in the polymeric network with cage like structure and molecular diffusion including phase transformation due to pressure imbalance between the hydrogel and its surroundings. The effect of pH of the solvant on the swelling rate of these beads has been studied experimentally. A mathematical model of the swelling process has been developed by considering Nernst-Planck equation representing the migration of mobile ions and Er ions, Poisson equation representing the equilibrium of the electric field and mechanical field equation representing swelling of the gel. An attempt has been made to predict the experimentally observed phenomena using these numerical simulations. It is observed experimentally that certain minimum concentration called activation threshold concentration of the water molecules must be present in the hydrogel in order to activate the swelling process. For the required activation threshold concentration of water in the beads, the pH induced change in the rate of swelling is also investigated. This effect is analyzed for various different core-shell structures of the beads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.