1000 resultados para Fongs -- Genètica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

S-adenosilmetionina (S-Adomet) es el principal dador de grupos metilo en un gran número de caminos metabólicos siendo, luego del ATP, el co-factor más abundante en reacciones metabólicas. S-Adomet es producido a partir de L-metionina y ATP por la enzima S-adenosil-L-metionina sintetasa. El estudio del metabolismo de S-Adomet en células eucariotas ha tomado un interés creciente en años recientes considerando la íntima relación existente entre niveles celulares alternativos de S-Adomet y procesos normales o patológicos asociados a metilación del DNA. En particular, recientemente se ha propuesto que niveles celulares anormales de S-Adomet y/o actividad anormal de la enzima DNA metiltransferasa pueden afectar la expresión de fenómenos epigenéticos tales como "imprinting" de genes y/o aumentar la frecuencia de aparición de transiciones C --> T afectando así marcadamente las tasas de mutación en el DNA. Esta hipótesis ha sido apoyada por estudios realizados con DNA metiltransferasas procarióticas y por estudios realizados con ratones mutantes en el gen de la principal DNA metiltransferasa de mamíferos. (...) El proyecto está dirigido a conocer la relación existente entre la disponibilidad celular de S-adenosilmetionina y fenómenos de mutación y metilación del DNA en el hongo filamentoso Neurospora crassa. En este contexto, se realiza el clonado y caracterización molecular y estructural del gen de la enzima S-adenosilmetionina sintetasa de este organismo. Se estudia la consecuencia de la expresión aberrante de variantes normales y mutantes de este gen in vivo. Se analizará la influencia de niveles celulares alternativos de S-adenosilmetionina sobre dos fenómenos epigenéticos vinculados a metilación del DNA denominados quelling y RIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La cabra, tal vez la primera de las especies domesticadas por el hombre y relacionada a éste por más de 10.000 años, es un animal destacable por su rusticidad, precocidad, docilidad y adaptación al medio, que le prodiga tanto carne, como leche, pieles y fibras. Por lo general es el último eslabón de utilización de áreas pedregadas, habiéndola asociado desde siempre a la aridez, el sobre pastoreo y la erosión. No obstante, con un manejo racional, es posible obtener con su explotación importantes beneficios. (...) La problemática de estos productores es compleja. Las explotaciones son predominantemente de tipo familiar subsistencial. A la tendencia precaria de la tierra en la mayoría de ellos, que ha conducido a una degradación acentuada del suelo, se suman la carencia de conocimientos tecnológicos para mejorar la producción y la falta de capacidad empresarial. Con el propósito de conocer aspectos relativos a la estructura y manejos reproductivos, sanitarios, nutricional, productivo y de comercialización de la producción caprina de los departamentos Calamuchita y Río Cuarto, que cuentan con 338 EAPS con 12.225 cabezas, durante los años 1993 y 1994, la cátedra de producción ovina y caprina de la Universidad Nacional de Río Cuarto, realizó sendos relevamientos que arrojaron las siguientes conclusiones: La mayoría de los rebaños (84%) esta en poder de productores minifundistas, de escasos recursos económicos cuya principal fuente de ingresos proviene del trabajo en la explotación y donde las limitantes económico-productivas están relacionadas con el Manejo alimenticio; manejo productivo; manejo sanitario, nivel genético, nivel tecnológico y mercado. Objetivos generales: - Incrementar los índices de los hatos, a través de la instrumentación de normas adecuadas de manejos nutricional, reproductivo, sanitario y de mejora genética del pie de cría. - Impulsar la diversificación de la producción propiciando diferentes alternativas productivas. - Promover la organización de los productores para la producción, comercialización y capacitación. Objetivos específicos: 1. Difusión de pautas de manejos nutricional, reproductivo, sanitario y de infraestructura entre los productores caprineros de los departamentos Calamuchita y Río Cuarto. 2. Adopción por parte de los productores de un plan sanitario básico. 3. Mejoramiento genético del pie de cría criollo. 4. Introducción de espacies forrajeras adaptadas al hábitat que ofrecen las zonas semiáridas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El análisis de las poblaciones humanas desde el punto de vista antropológico-evolutivo persigue como finalidad última el establecimiento de un diagnóstico sobre el estado de equilibrio/desequilibrio genético de la población estudiada, y sobre los factores -tanto biológicos cuanto culturales- que al momento presente constituyen los principales condicionantes de la situación encontrada. Establecer tal diagnóstico implica llegar a: 1) una estimación fiable de la variabilidad genética del grupo, y 2) una medición de la influencia de los procesos evolutivos (mutación, selección, migración y deriva génica) sobre tal variabilidad. Sabido es que un empobrecimiento genético puede ser causado por diferentes procesos que disminuyesen el tamaño de los grupos, cruzamientos de tipo endógamo y elevada consanguinidad, falta de nuevos genes llegados por inmigración, o a causa de la actuación conjunta de dichos factores, con diferente intensidad según el momento histórico y el lugar geográfico considerado. El requisito previo imprescindible para que pueda llevarse a cabo el enfoque planteado es el conocimiento exhaustivo de la estructura de la población, que indefectiblemente debe realizarse desde una doble perspectiva: 1) el análisis de los procesos demográficos determinantes de la misma, con sus concomitantes condicionantes socio-culturales, y 2) las posibles consecuencias a nivel biológico que éstos traen aparejadas, y que se constituyen en factores conductores de la posterior evolución poblacional. El presente plan de investigación forma parte de un proyecto más amplio que ha tomado como zona de estudio el área del valle de Traslasierra. El mismo se lleva a cabo desde hace cinco años en la Cátedra de Antropología de la Facultad de Ciencias Naturales de la Universidad Nacional de Córdoba, contando con el apoyo financiero del CONICET y de la SECYT Córdoba.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La provincia de Córdoba participa con aproximadamente el 23 por ciento del área total sembrada anualmente con alfalfa en nuestro país y, en los últimos años, se ha incrementado levemente, en contraste con las provincias de Buenos Aires, Santa Fe y Entre Ríos, donde ha decrecido. La inoculación de este cultivo con cepas del género Sinorhizobium ha permitido mejorar su rendimiento en los suelos de la región semiárida. La utilización para la siembra de semillas preinoculadas con microorganismos de origen extranjero, cuya eficiencia y adaptación a las condiciones locales no siempre se conocen, y con escasa capacidad de competencia ante las cepas naturalizadas, trae como consecuencia un bajo establecimiento de la nodulación y por consiguiente una escasa reposición del nitrógeno removido del suelo. Aún cuando la inoculación está relativamente difundida, en la actualidad no se ha determinado la proporción relativa de nitrógeno fijado por las cepas introducidas respecto de las nativas o naturalizadas, ni la competencia que se genera en el suelo por la ocupación de los sitios potenciales para la formación de nódulos. Nuestra hipótesis de trabajo es: "la inoculación con cepas de Sinorhizobium meliloti debidamente caracterizadas y eficientes en la fijación del nitrógeno atmosférico mejorará el rendimiento de alfalfa en la región centro-sur de Córdoba". Los objetivos de este estudio son caracterizar fenotípica y genotípica el aislamiento Sinorhizobium meliloti 3DOh13 y evaluar su eficiencia simbiótica en el cultivo de alfalfa, mediante ensayos de infectividad, eficiencia y competencia con cepas nativas. La evaluación de la infectividad de la cepa comprende estudios de cinética de la nodulación, número total de nódulos y ubicación de los mismos en experiencias donde las plantas crecen en condiciones de invernáculo sobre un soporte de tierra:arena:perlita (2:1:1). Se realizarán ensayos de competitividad, coinoculando semillas con la cepa DOh13 y otras nativas, en bolsas plásticas con medio mineral en los que se desafiarán los distintos aislamientos. Se inoculan las plantas con sólo dos aislamientos y los nódulos de la raíz principal serán extraídos a fin de aislar los microorganismos ocupantes, los que serán diferenciados por marca de resistencia a antibioticos. La eficiencia en la fijación de nitrógeno será cuantificada por las técnicas de reducción del acetileno en el nódulo y, en caso de ser necesario, se usará el método de Kjeldahl (N total) para la raíz, tejido aéreo o planta entera. La caracterización genotípica de S. meliloti 3DOh13 incluirá métodos de fingerprint de ADN por técnicas de PCR y secuenciamiento del ADNr 16S. Esta investigación permitirá obtener información precisa sobre la respuesta de alfalfa a la inoculación con la cepa de referencia. El producto que se espera obtener es un nuevo inoculante, formulado con una cepa efectiva en la fijación de nitrógeno, debidamente caracterizada y con probada capacidad de adaptación a los suelos de la región

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde el tiempo de la conquista y colonización en siglo XVI, el territorio argentino fue poblado por especies exóticas entre ellas ovinos. El tipo de animal introducido al territorio determinó la formación poblaciones locales del tipo criollo donde en el caso de los ovinos pertenecían al tipo lanero. Actualmente dichas poblaciones se encuentran relegadas y la mayoría en manos de pequeños productores. En base a estudios previos se puede afirmar que constituirían un material genético de importante variabilidad y de un potencial textil importante. El proyecto pretende realizar una caracterización zootécnica y genética mediante relevamientos poblacionales en regiones donde aún se conserva material autóctono o local del tipo criollo. El relevamiento comprende un posicionamiento geográfico y breve descripción del sistema de producción, la toma de información biológica, morfológica y zoométrica de los animales de la majada y la correspondiente obtención de muestras de lana. Estas muestras son remitidas al Laboratorio de Fibras Animales de la Red SUPPRAD para su evaluación. Para determinar la variabilidad zootécnica y genérica de las poblaciones se confeccionan Índices de arcaísmo o primariedad basados en marcadores fenotípicos, bioquímicos y moleculares. A ello se propone incorporar estudios sobre desempeño productivo y reproductivo de las poblaciones para poner analizar los factores que afectan la producción de lana y diseñar estrategias de manejo que la optimicen. Ello posibilitará evaluar la variabilidad de las poblaciones y proponer estrategias de conservación y/o mejoramiento. Paralelamente se podrá establecer el destino del producto textil producido por dichas poblaciones ovinas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde el tiempo de la conquista y colonización en siglo XVI, el territorio argentino fue poblado por especies exóticas entre ellas ovinos y caprinos. El tipo de animal introducido al territorio determinó la formación de poblaciones locales del tipo criollo donde en el caso de los ovinos pertenecían al tipo lanero. En el caso de los caprinos en un principio fueron con escasa cobertura pero existen evidencias de que posteriormente se introdujeron caprinos del tipo productores de cashmere y posteriormente caprinos de Angora. En el caso de los Camélidos estos son autóctonos y jugaron un rol preponderante en los pueblos originarios. Actualmente dichas poblaciones se encuentran relegadas y en manos de pequeños productores en su mayoría aborígenes. En base a estudios previos se puede afirmar que constituyen un material genético de importante variabilidad y de un potencial textil importante. El proyecto pretende continuar realizando relevamientos poblacionales en regiones donde aún se conserva material autóctono o local del tipo criollo con la finalidad de realizar una caracterización zootécnica y genética y así poder evaluar la variabilidad de las poblaciones y proponer estrategias de conservación y/o mejoramiento así como el destino del producto textil producido por dichas poblaciones. El relevamiento comprende un posicionamiento geográfico y breve descripción del sistema de producción, la toma de información biológica, morfológica y zoométrica de al menos el 20% de los animales según el tamaño de la majada o hato y la correspondiente obtención de muestras de fibra. Estas muestras son remitidas al laboratorio de fibras animales de la Red SUPPRAD para su evaluación. Para determinar la variabilidad zootécnica y genética de las poblaciones se confeccionan Índices de arcaísmo o primariedad basados en marcadores fenotípicos, bioquímicos y moleculares. A ello se propone incorporar estudios sobre desempeño productivo y reproductivo de las poblaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La producción de carne bovina en áreas subtropical y templadas cálidas se ve afectada en cantidad y calidad debido a las condiciones de calor y humedad a lo largo del año o en determinados meses del año. Las razas tradicionales son las que más sufren esa condición climática y por otra parte, las razas y/o cruzas más adaptadas muestran problemas de calidad de carne, menor precocidad reproductiva y de temperamento. Buena parte de la producción bovina de carne de la provincia de Córdoba está incluida en áreas que sufren durante todo o parte del año de condiciones climáticas desfavorables. Además el fenómeno creciente del calentamiento global incrementará la extensión de esas áreas y agravará el problema en las actuales. Las razas bovinas de origén índico y africano muestran mayor adaptación al estrés térmico y las razas británicas son más susceptibles aunque existe variación individual. Los indicadores climáticos de estrés térmico son variados, aunque humedad relativa del ambiente y temperatura son los más importantes. Ambas variables se combinan en un índice de humedad y temperatura (THI) que es un indicador válido para predecir dicho estrés. En el animal se pueden realizar diversos ensayos que incluyen toma de información de temperatura corporal profunda y frecuencia respiratoria. Dichos ensayos permiten clasificar a los animales como resistentes o susceptibles al estrés térmico. Los trabajos que se han realizado en genética animal en otros países demuestran un importante componente genético aditivo en este comportamiento frente al calor y humedad, esto permitiría pensar en incluir en programas de mejoramiento de producción de carne variables de adaptación al estrés térmico. En general se argumenta que las razas más adaptadas son simultáneamente de menor productividad en las áreas subtropicales, pero esto no queda claro a qué es debido; una menor producitividad primaria de esas áreas o al menor desempeño animal. Una hipótesis similar se puede formular para la calidad de la carne y las dificultades de manejo de esas razas por su temperamento más agresivo. Si la respuesta incluye el desempeño, ésto estaría dado en buena parte por componentes genéticos. Se conocen relaciones positivas entre variables de productividad, adaptabilidad, calidad de carne y temperamento, aunque aún no se han estudiado en nuestra provincia. Una raza sanga de orígen africano (Tuli) y sus cruzas se están ensayando en la UCC como parte de la búsqueda de soluciones a los problemas planteados anteriormente. Se desconocen los mecanismos fisiológicos de adaptación al estrés térmico que son utilizados por estos animales y también se ignoran las consecuencias genéticas de las cruzas con otras razas sobre estos mecanismos. Tampoco se disponen de parámetros poblacionales (fenotípicos y genéticos) de esta raza y sus cruzas.Los animales a utilizar en este trabajo pertenecen a las razas Tuli puros, Aberdeen Angus, Hereford, cruzas F1, cruzas inter sé de las F1 (San Ignacio) y Bradford. De los resultados esperados se podrán extraer sugerencias y desarrollar estrategias para mejorar la producción de carne en el área subtropical de nuestra provincia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El virus de la hepatitis C (HCV) es el principal agente causante de hepatitis crónica en el mundo. Basado en la divergencia de la secuencia de nucleótidos se lo ha clasificado en 6 genotipos y varios subtipos. La distribución de genotipos ha sido asociada a vías específicas de transmisión y a los movimientos poblacionales. Esta diversidad constituye las bases del manejo clínico del paciente y provee la información decisiva para las estrategias terapéuticas. Asimismo, la heterogeneidad genética de HCV continúa siendo el mayor obstáculo para el desarrollo de vacunas y terapias efectivas. Estudios previos realizados en Argentina demuestran que la distribución de genotipos es diferente entre regiones geográficas muy cercanas. En general el genotipo 1 es el más prevalente en la región este de nuestro país y en la región central existe una particular alta prevalencia de genotipo 2 (HCV-2) (>55%), 2c, y HCV-1 en usuarios de drogas endovenosas. A fin de confirmar la existencia de dos eventos de transmisión independientes con claras implicancias clínico terapéuticas, el objetivo de este proyecto es completar y profundizar el estudio del proceso de diversificación de estos genotipos en Córdoba mediante análisis moleculares y bioinformáticos. Así, más muestras y otras regiones genómicas deberían ser analizadas (NS5B/E2) para determinar el origen y caracterizar los patrones de diversificación. En este sentido, un reciente estudio serológico, realizado por personal del ministerio de Salud, que involucró a 3782 individuos habitantes de cuatro áreas geográficas de la provincia de Córdoba reveló una alta prevalencia de HCV (>5%). Dichas muestras son la base del estudio propuesto en este plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enfermedad de Chagas (EC), es una infección parasitaria, causada por el parásito protozoarío Trypanosoma cruzi (T. cruzi), que afecta a millones de personas en América del Sur y Central. Después de la entrada en el huésped vertebrado, el parásito es capaz de infectar una amplia variedad de células. La fase inicial de la infección es llamada fase aguda y es caracterizada por alta parasitemia y parasitismo tisular. A continuación de la fase aguda, el paciente entra en una fase de curso clínico variable, ya que puede presentarse con ausencia de síntomas hasta severos daños cardíacos y gastrointestinales que pueden aparecen muchos años después de la primoinfección. La severidad y prevalencia de las diferentes formas clínicas de la EC varían entre diferentes regiones, las causas de la heterogeneidad epidemiológica y clínica entre los pacientes no están completamente dilucidadas. Es muy probable que, en estos diferentes fenotipos participen tanto la variabilidad genética del parásito como la del individuo infectado. La influencia de las características genéticas del parásito sobre las diversas manifestaciones clínicas ha sido abordada por distintos autores. Podemos especular que, las formas clínicas de la EC, pueden ser el producto de la combinación, de la composición genética del parasito y la del paciente. En la actualidad, pocos grupos estudian la participación de los factores genéticos de los pacientes chagásicos en el desarrollo de la EC. Las observaciones muestran gran disparidad de resultados, posiblemente debido a que los estudios comprenden un número pequeño de individuos y diferentes métodos utilizados para el análisis y clasificación de la patología. Polimorfismos genéticos de marcadores uniparentales: ADNmt (linaje materno) y cromosoma Y (herencia paterna), han demostrado gran utilidad para explorar tanto la variabilidad como las relaciones genéticas y son utilizados ya sea, para estudios de linaje o para investigar la asociación de diferentes haplogrupos con la susceptibilidad a desarrollar enfermedades. El objetivo de este proyecto es identificar una posible asociación entre determinados haplogrupos del ADNmt y del cromosoma Y (CY) con las diferentes presentaciones clínicas de la EC, a fin de detectar marcadores genéticos que contribuyan a describir el fenotipo del paciente chagásico cardiópata. Este trabajo se realizará con pacientes de un área endémica de la provincia de Córdoba (Dpto Cruz del Eje), no emparentados que posean serología positiva para dos o más pruebas de EC y con un seguimiento clínico completo durante varios años que permite clasificarlos en dos grandes grupos: I. Pacientes crónicos con patología cardíaca demostrada, (sintomáticos S). II. Pacientes crónicos sin patología cardiaca demostrada (asintomáticos A). Se analizará la seropositividad a T. cruzi en familias de áreas rurales y urbanas asociada a los grupos S y A. Se describirán los haplogrupos más frecuentes del ADNmt mediante la amplificación y secuenciación de los segmentos hipervariables de la región control. Las secuencias obtenidas serán alineadas y comparadas con las secuencias de Referencias de Cambridge. Se amplificarán 17 loci de secuencias cortas repetidas en tamden (Y-STR). Para el análisis de polimorfismo del CY. A fin de establecer, si existe una relación entre los haplogrupos del ADNmt y del CY en los grupos de las pacientes. Se analizará estaditicamente con que magnitud contribuyen los factores de riesgos clásicos para enfermedades cardiovasculares y el perfil genético del huésped a la variabilidad de la presentación de la EC. El diseño del proyecto es transversal y cuenta con la aprobación del comité de Bioética del Hospital Nacional de Clínicas UNC, y está de acuerdo con la declaración de Helsinski. Todos los pacientes firmaran el consentimiento informado. El material obtenido de cada paciente será utilizado exclusivamente para la determinación de los polimorfismos presentes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El descubrimiento de técnicas más sensibles para la detección del T. cruzi en el enfermo chagásico rescató el rol primordial del parásito en la patogenia y actualmente se considera a la enfermedad como el producto de la interacción de los genomas del parásito y el humano. Sin embargo aún queda por responder por qué el 30% de las personas infectadas evolucionan hacia una enfermedad cardíaca y el 70% permanece asintomático aunque con serología persistente; así como también la amplia variabilidad clínica, que puede resultar desde una cardiopatía sin consecuencias hasta producir muerte súbita. En este sentido, se ha descripto que la variabilidad genética del parásito debe estar relacionada con el tropismo del mismo a los diferentes órganos del huésped y, por lo tanto, con la forma clínica de la enfermedad y con las diferencias observadas luego del tratamiento específico de la enfermedad. Es por ello que proponemos determinar la importancia que tiene la composición genética del aislamiento de T. cruzi que infectó al huésped y/o la de los clones diferentes que pueden aparecer en sangre para explicar la amplia variabilidad de síntomas y signos que manifiestan los pacientes con cardiopatía chagásica crónica. Estos resultados contribuirán al entendimiento de la fisiopatogenia de la miocardiopatía chagásica y sus variabilidades clínicas y facilitarán establecer el pronóstico y tratamiento de la enfermedad. Pacientes que concurran al Hospital Materno Infantil de la Provincia de Córdoba, al Hospital Nacional de Clínicas y a la Clínica Sucre serán tratados de acuerdo con la declaración de Helsinki y firmarán consentimiento informado. Se seguirá la evolución clínico-cardiológica por radiografía, electrocardiografía y ecocardiografía. La serología para Chagas se determinará por HAI-ELISA. Se obtendrán muestras de sangre de estos pacientes que se clasificarán con serología positiva para Chagas sin cardiopatía, con cardiopatía leve y con cardiopatía severa. Extracción del ADN: las muestras de sangre periférica de cada paciente se mezclarán con igual volumen de guanidina 6M/EDTA 0,5M. El ADN se extraerá por técnicas convencionales con fenol:cloroformo:alcohol isoamílico y luego se precipitará con etanol. Finalmente la solución se resuspenderá en agua estéril libre de nucleasas. Se conservará a -4º C hasta su uso para la amplificación del contenido de ADN del parásito por la reacción en cadena de la polimerasa (PCR). PCR: la detección de los parásitos en cada muestra se determinará mediante la amplificación por PCR de un fragmento de la región variable correspondiente al minicírculo del ADN del kinetoplasto (kADN), utilizando primers específicos para dicha región. Análisis de la región variable del kADN por enzimas de restricción: la caracterización de los parásitos de cada muestra se realizará además mediante el análisis de los fragmentos producidos luego de la digestión con enzimas de restricción (RFLP). El amplificado producto de la PCR se utilizará para la digestión con las enzimas de restricción y los fragmentos obtenidos serán separados por electroforesis en geles de agarosa 2% teñidos con bromuro de etidio. Análisis de los resultados: Los perfiles de bandas obtenidos luego de la digestión con las enzimas de restricción de las muestras de sangre de los pacientes se correlacionarán con la sintomatología clínica de cada uno de ellos para determinar si existe relación entre la variabilidad genética del parásito infectante y la variedad clínica presentada. Los perfiles de bandas obtenidos luego de la RFLP de las muestras de sangre se analizarán cualitativamente por observación de los geles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A insuficiência cardíaca (IC) é uma doença complexa, onde diversos mecanismos fisiopatológicos atuam e diferentes polimorfismos genéticos estão envolvidos. O sistema adrenérgico está diretamente relacionado a esta patologia participando da auto-regulação cardiovascular, tendo papel crucial na deteriorização da função cardíaca. Os beta-bloqueadores surgiram como um grande avanço da cardiologia no tratamento da IC, no entanto a resposta medicamentosa varia para cada paciente podendo estar relacionado a diversos fatores, entre eles o genético. A determinação pela genética do desenvolvimento da IC, da resposta medicamentosa e prognóstico são questões que serão abrangidas nesta revisão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O óxido nítrico (NO), primariamente identificado como um fator relaxante derivado do endotélio, é um radical livre atuante na sinalização de diferentes processos biológicos. A identificação das isoformas das sintases do NO (NOS) e a subsequente caracterização dos mecanismos de ativação celulares das enzimas possibilitaram tanto a compreensão de parte das interações fisiológicas como a compreensão de parte dos mecanismos de doença, na qual o NO está envolvido. A isoforma endotelial da NOS (eNOS), expressa principalmente no endotélio vascular, desempenha importante papel na regulação da reatividade vascular e no desenvolvimento e na progressão da aterosclerose. Esta revisão tem o propósito de contextualizar o leitor sobre a estrutura da eNOS e seus mecanismos de ativação celular. Tendo em vista os avanços da biologia molecular, trataremos ainda dos conhecidos mecanismos de regulação da expressão gênica e do papel de variantes no código genético da eNOS associados a fenótipos cardiovasculares. Embora se reconheça a importância do NO como molécula ateroprotetora, nossa atenção estará voltada à revisão de literatura envolvendo NO e sua participação na modulação do fenótipo de vasodilatação muscular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1) O equilíbrio em populações, inicialmente compostas de vários genotipos depende essencialmente de três fatores: a modalidade de reprodução e a relativa viabilidade e fertilidade dos genotipos, e as freqüências iniciais. 2) Temos que distinguir a) reprodução por cruzamento livre quando qualquer indivíduo da população pode ser cruzado com qualquer outro; b) reprodução por autofecundação, quando cada indivíduo é reproduzido por uma autofecundação; c) finalmente a reprodução mista, isto é, os casos intermediários onde os indivíduos são em parte cruzados, em parte autofecundados. 3) Populações heterozigotas para um par de gens e sem seleção. Em populações com reprodução cruzada se estabelece na primeira geração um equilíbrio entre os três genotipos, segundo a chamada regra de Hardy- Weinberg. Inicial : AA/u + Aa/v aa/u = 1 Equilibirio (u + v/2)² + u + v/2 ( w + v/2) + (w + v/2)² = p2 + 2 p o. q o. + q²o = 1 Em populações com autofecundação o equilíbrio será atingido quando estiverem presentes apenas os dois homozigotos, e uma fórmula é dada que permite calcular quantas gerações são necessárias para atingir aproximadamente este resultado. Finalmente, em populações com reprodução mista, obtemos um equilíbrio com valores intermediários, conforme Quadro 1. Frequência Genotipo Inicial mº Geração Final AA u u + 2m-1v / 2m+1 u + 1/2v Aa v 2/ 2m+2 v - aa w w + 2m - 1/ 2m + 1 v w + 1/2 v 4) Os índices de sobrevivencia. Para poder chegar a fórmulas matemáticas simples, é necessário introduzir índices de sobrevivência para medir a viabilidade e fertilidade dos homozigotos, em relação à sobrevivência dos heterozigotos. Designamos a sobrevivência absoluta de cada um dos três genotipos com x, y e z, e teremos então: x [ A A] : y [ Aa] : z [ aa] = x/y [ A A] : [ Aa] : z/ y [aa] = R A [ AA] : 1 [Aa] : Ra [aa] É evidente que os índices R poderão ter qualquer valor desde zero, quando haverá uma eliminação completa dos homozigotos, até infinito quando os heterozigotos serão completamente eliminados. Os termos (1 -K) de Haldane e (1 -S) ou W de Wright não têm esta propriedade matemática, podendo variar apenas entre zero e um. É ainda necessário distinguir índices parciais, de acordo com a marcha da eliminação nas diferentes fases da ontogenia dos indivíduos. Teremos que distinguir em primeiro lugar entre a eliminação durante a fase vegetativa e a eliminação na fase reprodutiva. Estas duas componentes são ligadas pela relação matemática. R - RV . RR 5) Populações com reprodução cruzada e eliminação. - Considerações gerais. a) O equilibrio final, independente da freqüência inicial dos genes e dos genotipos para valores da sobrevivência diferentes de um, é atingido quando os gens e os genotipos estão presentes nas proporções seguintes: (Quadro 2). po / qo = 1- ro / 1-Ra [AA] (1 - Ro)² . Rav [ Aa] = 2(1 - Ra) ( 1 - Ra) [a a} = ( 1 - Ra)² . RaA b) Fórmulas foram dadas que permitem calcular as freqüências dos genotipos em qualquer geração das populações. Não foi tentado obter fórmulas gerais, por processos de integração, pois trata-se de um processo descontínuo, com saltos de uma e outra geração, e de duração curta. 6) Populações com reprodução cruzada e eliminação. Podemos distinguir os seguintes casos: a) Heterosis - (Quadro 3 e Fig. 1). Ra < 1; Ra < 1 Inicial : Final : p (A)/q(a) -> 1-ra/1-ra = positivo/zero = infinito Os dois gens e assim os três genotipos zigóticos permanecem na população. Quando as freqüências iniciais forem maiores do que as do equilíbrio elas serão diminuidas, e quando forem menores, serão aumentadas. b) Gens recessivos letais ou semiletais. (Quadro 1 e Fig. 2). O equilíbrio será atingido quando o gen, que causa a redução da viabilidade dos homozigotos, fôr eliminado da população. . / c) Gens parcialmente dominantes semiletais. (Quadro 5 e Fig. 3). Rª ; Oz Ra < 1 Inicial : Equilibrio biológico Equilíbrio Matemático pa(A)/q(a) -> positivo /zero -> 1- Rq/ 1-Ra = positivo/negativo d) Genes incompatíveis. Ra > 1 ; Ra > 1; Ra > Ra Equílibrio/biológico p (A)/ q(a) -> positivo/zero Equilibrio matemático -> positivo/ zero -> zero/negativo -> 1-Ra/1 - Ra = negativo/negativo Nestes dois casos devemos distinguir entre o significado matemático e biológico. A marcha da eliminação não pode chegar até o equilíbrio matemático quando um dos gens alcança antes a freqüência zero, isto é, desaparece. Nos três casos teremos sempre uma eliminação relativamente rápida de um dos gens «e com isso do homozigoto respectivo e dos heterozigotòs. e) Foram discutidos mais dois casos especiais: eliminação reprodutiva diferencial dos dois valores do sexo feminino e masculino, -e gens para competição gametofítica. (Quadros 6 e 7 e Figs. 4 a 6). 7) População com autofecundação e seleção. O equilíbrio será atingido quando os genotipos estiverem presentes nas seguintes proporções: (Quadro 8); [AA] ( 0,5 - Ra). R AV [Aa] = 4. ( 0,5 - Ra) . (0.5 -R A) [aa] ( 0,5 - R A) . Rav Também foram dadas fórmulas que permitem calcular as proporções genotípicas em cada geração e a marcha geral da eliminação dos genotipos. 8)Casos especiais. Podemos notar que o termo (0,5 -R) nas fórmulas para as populações autofecundadas ocupa mais ou menos a mesma importância do que o termo (1-R) nas fórmulas para as populações cruzadas. a) Heterosis. (Quadro 9 e Fig. 7). Quando RA e Ra têm valores entre 0 e 0,5, obtemos o seguinte resultado: No equilíbrio ambos os gens estão presentes e os três heterozigotos são mais freqüentes do que os homozigotos. b) Em todos os demais casos, quando RA e Ra forem iguais ou maiores do que 0,5, o equilíbrio é atingido quando estão representados na população apenas os homozigotos mais viáveis e férteis. (Quadro 10). 9) Foram discutidos os efeitos de alterações dos valores da sobrevivência (Fig. 9), do modo de reprodução (Fig. 10) e das freqüências iniciais dos gens (Fig. 8). 10) Algumas aplicações à genética aplicada. Depois de uma discussão mais geral, dois problemas principais foram tratados: a) A homogeneização: Ficou demonstrado que a reprodução por cruzamento livre representa um mecanismo muito ineficiente, e que se deve empregar sempre ou a autofecundação ou pelo menos uma reprodução mista com a maior freqüência possível de acasalamentos consanguíneos. Fórmulas e dados (Quadro 11 e 12), permitem a determinação do número de gerações necessárias para obter um grau razoável de homozigotia- b) Heterosis. Existem dois processos, para a obtenção de um alto grau de heterozigotia e com isso de heterosis: a) O método clássico do "inbreeding and outbreeding". b) O método novo das populações balançadas, baseado na combinação de gens que quando homozigotos dão urna menor sobrevivência do que quando heterozigotos. 11) Algumas considerações sobre a teoria de evolução: a) Heterosis. Os gens com efeito "heterótico", isto é, nos casos onde os heterozigotos s mais viáveis e férteis, do que os homozigotos, oferecem um mecanismo especial de evolução, pois nestes casos a freqüência dos gens, apesar de seu efeito negativo na fase homozigota, tem a sua freqüência aumentada até que seja atingido o valor do equilíbrio. b) Gens letais e semiletais recessivos. Foi demonstrado que estes gens devem ser eliminados automáticamente das populações. Porém, ao contrário do esperado, não s raros por exemplo em milho e em Drosophila, gens que até hoje foram classificados nesta categoria. Assim, um estudo detalhado torna-se necessário para resolver se os heterozigotos em muitos destes casos não serão de maior sobrevivência do que ambos os homozigotos, isto é, que se trata realmente de genes heteróticos. c) Gens semiletais parcialmente dominantes. Estes gens serão sempre eliminados nas populações, e de fato eles são encontrados apenas raramente. d) Gens incompatíveis. São também geralmente eliminados das populações. Apenas em casos especiais eles podem ter importância na evolução, representando um mecanismo de isolamento.