857 resultados para Flys Visual-system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article describes the pathological changes that have been observed in different parts of the visual system in Alzheimer's disease as well as the visual symptoms which may result from these changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the effect of ageing on the visual system using the relatively new technique of magentoencephalography (MEG). This technique measures the magnetic signals produced by the visual system using a SQUID magnetometer. The magnetic visual evoked field (VEF) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15 - 86 years. Factors that influenced subject defocussing or defixating the stimulus or selective attention were controlled as far as possible. The latency of the major positive component to the pattern reversal stimulus (P100M) increased with age particularly after the age of 55 years while the amplitude of the P100M decreased over the life span. The latency of the major flash component (P2M) increased much more slowly with age, while its amplitude decreased in only a proportion of elderly subjects. Changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis or degenerative changes in the retina. The P2M may be more susceptible to senile changes in the retina. The data suggest that the spatial frequency channels deteriorate more rapidly with age than the luminance channels and that MEG may be an effective method of studying ageing in the visual system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different visual stimuli may activate separate channels in the visual system and produce magnetic responses from the human bran which originate from distinct regions of the visual cortex. To test this hypothesis, we have investigated the distribution of visual evoked magnetic responses to three distinct visual stimuli over the occipital region of the scalp with a DC-SQUID second-order gradiometer in an ubshielded environment. Patterned stimuli were presented full field and to the right half field, while a flash stimulus was presented full field only, in five normal subjects. Magnetic responses were recorded from 20 to 42 positions over the occipital scalp. Topographic maps were prepared of the major positive component within the first 150ms to the three stimuli, i.e., the P100m (pattern shift), C11m (pattern onset) and P2m (flash). For the pattern shift stimulus the data suggested the source of the P100m was close to the midline with the current directed towards the medial surface. The data for the pattern onset C11m suggested a source at a similar depth but with the current directed away from the midline towards the lateral surface. The flash P2m appeared to originate closer to the surface of the occipital pole than both the patterned stimuli. Hence the pattern shift (which may represent movement), and the pattern onset C11m (representing contrast and contour) appear to originate in similar areas of brain but to represent different asepcts of cortical processing. By contrast, the flash P2m (representing luminance change) appears to originate in a distinct area of visual cortex closer to the occipital pole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work presented in this thesis is divided into two distinct sections. In the first, the functional neuroimaging technique of Magnetoencephalography (MEG) is described and a new technique is introduced for accurate combination of MEG and MRI co-ordinate systems. In the second part of this thesis, MEG and the analysis technique of SAM are used to investigate responses of the visual system in the context of functional specialisation within the visual cortex. In chapter one, the sources of MEG signals are described, followed by a brief description of the necessary instrumentation for accurate MEG recordings. This chapter is concluded by introducing the forward and inverse problems of MEG, techniques to solve the inverse problem, and a comparison of MEG with other neuroimaging techniques. Chapter two provides an important contribution to the field of research with MEG. Firstly, it is described how MEG and MRI co-ordinate systems are combined for localisation and visualisation of activated brain regions. A previously used co-registration methods is then described, and a new technique is introduced. In a series of experiments, it is demonstrated that using fixed fiducial points provides a considerable improvement in the accuracy and reliability of co-registration. Chapter three introduces the visual system starting from the retina and ending with the higher visual rates. The functions of the magnocellular and the parvocellular pathways are described and it is shown how the parallel visual pathways remain segregated throughout the visual system. The structural and functional organisation of the visual cortex is then described. Chapter four presents strong evidence in favour of the link between conscious experience and synchronised brain activity. The spatiotemporal responses of the visual cortex are measured in response to specific gratings. It is shown that stimuli that induce visual discomfort and visual illusions share their physical properties with those that induce highly synchronised gamma frequency oscillations in the primary visual cortex. Finally chapter five is concerned with localization of colour in the visual cortex. In this first ever use of Synthetic Aperture Magnetometry to investigate colour processing in the visual cortex, it is shown that in response to isoluminant chromatic gratings, the highest magnitude of cortical activity arise from area V2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis consisted of two major parts, one determining the masking characteristics of pixel noise and the other investigating the properties of the detection filter employed by the visual system. The theoretical cut-off frequency of white pixel noise can be defined from the size of the noise pixel. The empirical cut-off frequency, i.e. the largest size of noise pixels that mimics the effect of white noise in detection, was determined by measuring contrast energy thresholds for grating stimuli in the presence of spatial noise consisting of noise pixels of various sizes and shapes. The critical i.e. minimum number of noise pixels per grating cycle needed to mimic the effect of white noise in detection was found to decrease with the bandwidth of the stimulus. The shape of the noise pixels did not have any effect on the whiteness of pixel noise as long as there was at least the minimum number of noise pixels in all spatial dimensions. Furthermore, the masking power of white pixel noise is best described when the spectral density is calculated by taking into account all the dimensions of noise pixels, i.e. width, height, and duration, even when there is random luminance only in one of these dimensions. The properties of the detection mechanism employed by the visual system were studied by measuring contrast energy thresholds for complex spatial patterns as a function of area in the presence of white pixel noise. Human detection efficiency was obtained by comparing human performance with an ideal detector. The stimuli consisted of band-pass filtered symbols, uniform and patched gratings, and point stimuli with randomised phase spectra. In agreement with the existing literature, the detection performance was found to decline with the increasing amount of detail and contour in the stimulus. A measure of image complexity was developed and successfully applied to the data. The accuracy of the detection mechanism seems to depend on the spatial structure of the stimulus and the spatial spread of contrast energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In an endeavour to provide further insight into the maturation of the cortical visual system in human infants, chromatic transient pattern reversal visual evoked potentials to red/green stimuli, were studied in a group of normal full term infants between the ages of 1 and 14 weeks post term in both cross sectional and longitudinal studies. In order to produce stimuli in which luminance cues had been eliminated with an aim to eliciting a chromatic response, preliminary studies of isoluminance determination in adults and infants were undertaken using behavioural and electrophysiological techniques. The results showed close similarity between the isoluminant ratio for adults and infants and all values were close to photometric isoluminance. Pattern reversal VEPs were recorded to stimuli of a range of red/green luminance ratios and an achromatic checkerboard. No transient VEP could be elicited with an isoluminant chromatic pattern reversal stimulus from any infant less than 7 weeks post term and similarly, all infants more than 7 weeks post term showed clear chromatic VEPs. The chromatic response first appeared at that age as a major positive component (P1) of long latency. This was delayed and reduced in comparison to the achromatic response. As the infant grew older, the latency of the P1 component decreased with the appearance of N1 and N by the 10th week post term. This finding was consistent throughout all infants assessed. In a behavioural study, no infant less than 7 weeks post term demonstrated clear discrimination of the chromatic stimulus, while those infants older than 7 weeks could do so. These findings are reviewed with respect to current neural models of visual development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is known that parallel pathways exist within the visual system. These have been described as magnocellular and parvocellular as a result of the layered organisation of the lateral geniculate nucleus and extend from the retina to the cortex. Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: a) multiply handicapped children have a high incidence of disorders affecting the visual system; b) assessment and management of visual disorders in this group of children presents a complex challenge; c) this study describes the results of visual function assessment in two children with neurological disability over a one-year period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo, procura explicar a modularidade da mente humana, como um conjunto de módulos, permitindo desta forma contribuir para o estudo das ciências cognitivas. Estes módulos da arquitetura mental, permitem que a nossa mente interprete a cor resultante do sistema visual e das longitudes de ondas do espetro eletromagnético refratado dos objetos. Tendo por base o estudo do sistema visual, as células sensíveis, designadas por fotorrecetores percorrem o nervo ótico até atingir o encéfalo, localizando-se aí o sistema percetivo, permitindo desta forma realizar o estudo sobre busca visual da cor, como medida avaliadora do funcionamento do sistema visual, um estudo exploratório a propósito da objetividade da felicidade em crianças, que visa explorar a busca visual disjuntiva da cor como medida objetiva do bom funcionamento mental, do bem-estar subjetivo, como construto da felicidade. A amostra foi constituída por um grupo de 49 crianças não institucionalizadas e por um grupo de 16 crianças institucionalizadas, de ambos os sexos. Para a concretização deste estudo, foi necessária a utilização de uma tarefa de busca visual disjuntiva, que utilizou as simetrias de cores pertencentes ao mesmo par oponente e cores pertencentes a diferentes pares oponentes. Os resultados sugerem que não há qualquer interferência da institucionalização no funcionamento mental, logo no bem-estar subjetivo nas crianças; ABSTRACT: This study seeks to explain the modularity of the human mind, as a set of modules, giving this way a contribution to the study of the cognitive sciences. These modules of the mental architecture, allow our mind to interpret the resulting color of the visual system and the wavelengths of the electromagnetic spectrum refracted from the objects. Based on the study of our visual system, sensitive cells known as photoreceptors, which run along the optic nerve to the encephalon, being the perceptive system located there, allowing in this way to carry out the study on visual search of colour, as an assessment measure of the functioning of the visual system, an exploratory study concerning the objectivity of happiness in children, which aims to explore the disjunctive visual search of color as an objective measure of good mental functioning, of subjective well-being, as a construct of happiness. The sample consisted of a group of 49 non institutionalized children and of a group of 16 institutionalized children from both sexes. For the implementation of this study it was necessary to use a disjunctive visual search task, which used the Symmetry of colours belonging to the same opponent pair, and colours belonging to different opponent pairs. The results suggest that there is no interference from the institutionalization in mental functioning, therefore in the children’s subjective well being.