99 resultados para Fluorescens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (approximate to 90 mmol L-1). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex (R) 100L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embora os ftalatos sejam um dos poluentes mais frequentemente encontrados no meio ambiente, há escassez de dados na literatura sobre biorremediação de solos tropicais contaminados por esses compostos. Por esse motivo, este estudo avaliou a biorremediação de um solo contaminado com os plastificantes DEHP (Bis-2-etilhexilftalato), DIDP (Di-isodecilftalato) e álcool isobutílico, por uma indústria no Estado de São Paulo. A biorremediação ocorreu pela utilização de microrganismos presentes no solo e pela adição de inóculo adaptado em reator em fase de lama. O reator foi monitorado durante 120 dias, sendo corrigida apenas a umidade do solo. Os resultados indicaram que a biodegradação dos ftalatos seguiu uma cinética de primeira ordem e a biorremediação ocorreu na faixa de pH entre 7,4 e 8,4 e temperaturas entre 17 e 25 ºC, com eficiência de remoção de contaminantes acima de 70 %. Após 120 dias, o teor de DEHP estava abaixo de 4 mg kg-1, limite estipulado pela legislação brasileira para solo de uso residencial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo studio “Lotta biologica a Fusarium solani f.sp. cucurbitae su zucchino” si colloca nell’ambito della difesa integrata delle colture orticole dalle fitopatie fungine, in particolare quelle causate da patogeni ad habitat terricolo nei confronti dei quali è sempre più frequente il ricorso a mezzi di lotta diversi dai prodotti chimici. Interessante e innovativa appare la prospettiva di utilizzare microrganismi adatti a svilupparsi nel suolo, competenti per la rizosfera delle piante e con spiccate caratteristiche d’antagonismo verso i patogeni tellurici e di stimolazione delle difese sistemiche della pianta. Il marciume del colletto delle cucurbitacee, causato da diversi patogeni tra cui Fusarium solani f.sp. cucurbitae, rappresenta la principale malattia fungina di tipo tellurica che colpisce lo zucchino ed il melone nella Pianura Padana e che può portare a consistenti perdite produttive. Indagini condotte dal 2004 da parte del Diproval nell’areale bolognese, hanno evidenziato un’elevata frequenza del patogeno su zucchino coltivato soprattutto in tunnel. Considerata la carenza di conoscenze locali di F. solani f.sp. cucurbitae e di mezzi chimici di lotta efficaci, la ricerca svolta ha inteso approfondire la diagnosi della malattia e le caratteristiche biologiche degli isolati locali, e valutare la possibilità di utilizzare metodi biologici di lotta contro questo patogeno, nonché di studiare alcune delle possibili modalità d’azione di microrganismi antagonisti. Sono state pertanto prelevate, da zone diverse del Bolognese, campioni di piante di zucchino che presentavano sintomi di marciume del colletto ed è stato isolato il patogeno, che in base alle caratteristiche morfologiche macro e microscopiche, alle prove di patogenicità su diversi ospiti e a saggi biomolecolari, è stato identificato come Fusarium solani f. sp. cucurbitae W.C. Snyder & H.N. Hansen razza 1. Dagli isolati di campo sono state realizzate un centinaio di colture monosporiche venti delle quali sono state utilizzate per la prosecuzione delle prove. I venti ceppi sono stati saggiati per la loro patogenicità inoculandoli in terriccio sterile e con trapianto di giovani piante di zucchino. E’ risultata un’elevata variabilità del livello di virulenza tra i ceppi, stimata da 39% a 83% riguardo la gravità della malattia e da 61 a 96% per la frequenza di malattia. Sono state condotte prove di accrescimento miceliare che hanno evidenziato differenze tra i ceppi e tra gli esperimenti condotti a tre diverse temperature (17, 23 e 28°C) alla luce ed al buio. La crescita maggiore complessivamente è stata ottenuta a 23°C. I venti ceppi hanno anche mostrato di produrre, in vitro, vari livelli di enzimi di patogenesi quali cellulasi, poligalatturonasi, pectin liasi e proteasi. E’ stata evidenziata unan correlazione significativa tra attività cellulasica e pectin liasica con frequenza e gravità della malattia dei venti ceppi del patogeno. Le prove relative al contenimento della malattia sono state condotte in cella climatica. Sono stati considerati prodotti commerciali (Remedier, Rootshield, Cedomon, Mycostop, Proradix, Clonotry) a base rispettivamente dei seguenti microrganismi: Trichoderma harzianum ICC012 + T. viride ICC080, T. harzianum T22, Pseudomonas chlororaphis MA342, Streptomyces griseoviridis K61, P. fluorescens proradix DSM13134 e T. harzianum + Clonostachys rosea). I prodotti sono stati somministrati sul seme, al terreno e su seme+terreno (esperimenti 1 e 2) e in vivaio, al trapianto e vivaio+trapianto (esperimenti 3 e 4), riproducendo situazioni di pratico impiego. L’inoculazione del patogeno (un ceppo ad elevata patogenicità, Fs7 ed uno a bassa patogenicità, Fs37) è stata effettuata nel terreno distribuendo uno sfarinato secco di semi di miglio e cereali colonizzati dal patogeno. La malattia è stata valutata come intensità e gravità. I prodotti sono stati impiegati in situazioni di particolare stress, avendo favorito particolarmente la crescita del patogeno. Complessivamente i risultati hanno evidenziato effetti di contenimento maggiore della malattia nel caso del ceppo Fs37, meno virulento. La malattia è stata ridotta quasi sempre da tutti i formulati e quello che l’ha ridotta maggiormente è stato Cedomon. Il contenimento della malattia somministrando i prodotti solo nel terreno di semina o di trapianto è stato in generale quello più basso. Il contenimento più elevato è stato ottenuto con la combinazione di due tipologie di trattamento, seme+terreno e vivaio+trapianto. Le differenze tra i prodotti sono risultate più evidenti nel caso del ceppo Fs7. Per quanto riguarda lo studio di alcune delle modalità d’azione dei microrganismi contenuti nei formulati più efficaci, è stato verificato che tutti sono stati in grado di inibire, se pur in vario modo, la crescita del patogeno in vitro. Gli antagonisti più efficaci sono stati S. griseoviridis K61 (Mycostop) e P. fluorescens proradix DSM13134). I ceppi di Trichoderma, ed in particolare T.harzianum T22 (Rootshield), sono risultati i più attivi colonizzatori del substrato. Riguardo il fenomeno dell’antibiosi, il batterio P. fluorescens proradix DSM13134 ha mostrato di produrre i metaboliti non volatili più efficaci nel ridurre lo sviluppo del patogeno. Nelle condizioni sperimentali adottate anche i due ceppi di T. viride ICC080 e T. harzianum ICC012 hanno dimostrato di produrre metaboliti efficaci. Tali risultati, anche se relativi a prove in vitro, possono contribuire alla comprensione dei meccanismi dei microrganismi sul contenimento dell’infezione relativamente al rapporto diretto sul patogeno. E’ stato inoltre verificato che tutti i microrganismi saggiati sono dotati di competenza rizosferica e solo i batteri di endofitismo. Si conclude che, nonostante l’elevata pressione infettiva del patogeno che ha certamente influito negativamente sull’efficacia dei microrganismi studiati, i microrganismi antagonisti possono avere un ruolo nel ridurre l’infezione di F. solani f.sp. cucurbitae razza 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modern management of crop protection should be based on integrated control programmes, including the use of environmentally safe products. Antagonistic/beneficial bacteria and resistance inducers may have a great potential in the prophylaxis of diseases caused by common and quarantine pathogens. This work was carried out to confirm the ability of the known strain IPV-BO G19 (Pseudomonas fluorescens) against fire blight (Erwinia amylovora), as well as to evaluate their efficacy against southern bacterial wilt of tomato (Ralstonia solanacearum) and grapevine crown gall (Agrobacterium vitis). A virulent strain of R. solanacearum race 3 was inhibited by the antagonist on plate. When the pathogen was inoculated 48 h after their application to the root apparatus of tomato plants grown in a climatic chamber, bacterial wilt progression rate was clearly reduced. Moreover the defence response evoked by IPV-BO G19 was studied in tomato plants by monitoring the transcription of genes codifying for three PRs as PR-1a, PR-4, PR-5 and for an intracellular chitinase using multiplex RT-PCR and Real Time RT-PCR. In two field trials during 2005 and 2006, the strain IPV-BO G19 was compared with biofungicides and some abiotic elicitors to protect actively growing shoots of pear scions against fire blight. In both trials, IPV-BO G19 plus Na-alginate gave a high level of protection, three weeks after wound inoculation with E. amylovora. In pear leaf tissues treated with the antagonistic strain IPV-BO G19, catalase, superoxyde dismutase and peroxidise activity was evaluated as markers of induced resistance. The IPV-BO G19 strain was compared with other bioagents and resistance inducers to prevent grapevine crown gall under glasshouse and vineyard conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amanita caesarea es uno de los hongos ectomicorrícicos comestibles más valorado. Se trata de un hongo silicícola que se asocia a especies de interés forestal como Castanea sativa y Quercus suber. Las bacterias facilitadoras de la micorrización (MHB) pueden promueven el crecimiento de un hongo ectomicorrícico y favorecer la colonización de éste en las raíces de su hospedante. En el presente trabajo se ha estudiado la influencia de cepas bacterianas de las especies MHB Bacillus cereus, B. subtilis, Burkholderia cepacia, y Pseudomonas fluorescens sobre el crecimiento de Amanita caesarea (in vitro).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNALeu gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz