930 resultados para Flow through porous media
Resumo:
Bundle of capillaries, drying kinetics, continuous model, relative permeability, capillary pressure, control volume method
Resumo:
Magdeburg, Univ., Diss., 2007 (Nicht für den Austausch)
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.
Resumo:
Lamella formation and emigration from the water were investigated in juvenile Biomphalaria glabrata reared at two temperatures in aquaria with a constant water flow. Most snails (97.4%) reared at the lower temperature (21- C) formed lamella at the shell aperture and emigrated from the water, whereas only 10.1% did so at 25- C. Eighty percent of emigrations at 21- C occurred within a period of 15 days, 70-85 days after hatching. A comparison of the studies done so far indicates that the phenomenon may be affected by the ageing of snail colonies kept in the laboratory and their geographic origin, rather than the rearing conditions. This hypothesis, however, requires experimental confirmation.
Resumo:
The common shrew (Sorer araneus) is subdivided into several chromosomal races. As hybrid zones between them have been characterized, this organism is of particular interest in studying the role of chromosomes in speciation. Six microsatellite loci were used to evaluate the level of gene how in the S. araneus hybrid zone between the Cordon and Valais races. Most of these loci were very polymorphic, the total number of alleles detected per locus ranging from 3 to 20. Using Mantel tests, we showed that the effect of rivers as barriers to gene flow is less important at this sampling scale. The effect of the chromosomal race is of particular importantance in diminishing gene flow.
Resumo:
Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The delta O-18 values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56-68A degrees C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of delta C-13 and Sr-87/Sr-86 values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative delta C-13, high Sr-87/Sr-86, and low Sr content in the uppermost 50-150 m of the Jurassic profile (upper Oxfordian). The Sr-87/Sr-86 of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes the predominant attenuation mechanism at seismic frequencies. As a consequence, centimeter-scale perturbations of the subsurface physical properties should be taken into account for seismic modeling whenever detailed and accurate responses of the target structures are desired. This is, however, computationally prohibitive since extremely small grid spacings would be necessary. A convenient way to circumvent this problem is to use an upscaling procedure to replace the heterogeneous porous media by equivalent visco-elastic solids. In this work, we solve Biot's equations of motion to perform numerical simulations of seismic wave propagation through porous media containing mesoscopic heterogeneities. We then use an upscaling procedure to replace the heterogeneous poro-elastic regions by homogeneous equivalent visco-elastic solids and repeat the simulations using visco-elastic equations of motion. We find that, despite the equivalent attenuation behavior of the heterogeneous poro-elastic medium and the equivalent visco-elastic solid, the seismograms may differ due to diverging boundary conditions at fluid-solid interfaces, where there exist additional options for the poro-elastic case. In particular, we observe that the seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an interesting result, which has potentially important implications for wave-equation-based algorithms in exploration geophysics involving fluid-solid interfaces, such as, for example, wave field decomposition.
Resumo:
At subduction zones, oceanic lithosphere that has interacted with sea water is returned to the mantle, heats up during descent and releases fluids by devolatilization of hydrous minerals. Models for the formation of magmas feeding volcanoes above subduction zones require largescale transport of these fluids into overlying mantle wedges(1-3). Fluid flow also seems to be linked to seismicity in subducting slabs. However, the spatial and temporal scales of this fluid flow remain largely unknown, with suggested timescales ranging from tens to tens of thousands of years(3-5). Here we use the Li-Ca-Sr isotope systems to consider fluid sources and quantitatively constrain the duration of subduction-zone fluid release at similar to 70 km depth within subducting oceanic lithosphere, now exhumed in the Chinese Tianshan Mountains. Using lithium-diffusion modelling, we find that the wall-rock porosity adjacent to the flowpath of the fluids increased ten times above the background level. We show that fluids released by devolatilization travelled through the slab along major conduits in pulses with durations of about similar to 200 years. Thus, although the overall slab dehydration process is continuous over millions of years and over a wide range of pressures and temperatures, we conclude that the fluids produced by dehydration in subducting slabs are mobilized in short-lived, channelized fluid-flow events.
Resumo:
Tässä diplomityössä haluttiin mallintaa kuidutusrummun toimintaa Fluent virtausmallinusohjelman avulla. Aikaisempi tieto ja kehitystyö on perustunut kokemukseen ja käytännön kokeisiin. Kehitystyön alkuaikoina on suoritettu muutamia laskelmia koskien rummun tuottoa mutta sen jälkeen ei toimintaa ole laskennallisesti kuvattu. Työn ensimmäinen osa käsittelee yleisesti keräyspaperin käsittelyyn liittyviä laitteita ja menetelmiä. Toimintaperiaatteita on kuvattu yleisellä tasolla ja FibreFlow® rumpu on sitten käsitelty muita laitteita tarkemmin. Työn toinen osa sisältää sitten laboratoriotestit paikallisilta tahteilta hankittujen näytteiden viskositeettien ja tiheyksien määrittämiseksi. Kokeet suoritettiin Kemiantekniikan osastolla Brookfield viskoosimetrillä. Joitain alustavia laskentoja tuotosta suoritettiin aikaisempien tietojen perusteella. Rumpua kun on valmistettu vuodesta 1976, on tietoa kertynyt runsaasti vuosien mittaan. Laskelmia varten valittiin mallinnettavaksi alueeksi vain yksittäinen reikä sihdistä jolle laskettiin massavirta. Käytetyt laadut olivat OCC ja DIP. Myös eri rumpukoot otettiin jossain määrin huomioon.
Resumo:
Peer-reviewed
Resumo:
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa
Resumo:
The work considers the modeling of turbulent flow in radial diffuser with axial feeding. Due to its claimed capability to predict flow including features such as separation, curvature and adverse pressure gradient, the RNG k-epsilon model of Orzag et al. (1993) is applied in the present analysis. The governing equations are numerically solved using the finite volume methodology. Experiments were conducted to assess the turbulence model. Numerical results of pressure distribution on the front disk surface for different flow conditions when compared to the experimental data indicated that the RNG k-epsilon model is adequate to predict this class of flow.