969 resultados para Flow cytometry-based in vitro MN assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The diagnosis of malignant hematologic diseases has become increasingly complex during the last decade. It is based on the interpretation of results from different laboratory analyses, which range from microscopy to gene expression profiling. Recently, a method for the analysis of RNA phenotypes has been developed, the nCounter technology (Nanostring® Technologies), which allows for simultaneous quantification of hundreds of RNA molecules in biological samples. We evaluated this technique in a Swiss multi-center study on eighty-six samples from acute leukemia patients. METHODS: mRNA and protein profiles were established for normal peripheral blood and bone marrow samples. Signal intensities of the various tested antigens with surface expression were similar to those found in previously performed Affymetrix microarray analyses. Acute leukemia samples were analyzed for a set of twenty-two validated antigens and the Pearson Correlation Coefficient for nCounter and flow cytometry results was calculated. RESULTS: Highly significant values between 0.40 and 0.97 were found for the twenty-two antigens tested. A second correlation analysis performed on a per sample basis resulted in concordant results between flow cytometry and nCounter in 44-100% of the antigens tested (mean = 76%), depending on the number of blasts present in a sample, the homogeneity of the blast population, and the type of leukemia (AML or ALL). CONCLUSIONS: The nCounter technology allows for fast and easy depiction of a mRNA profile from hematologic samples. This technology has the potential to become a valuable tool for the diagnosis of acute leukemias, in addition to multi-color flow cytometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravesical chemotherapy is an important part of the treatment for superficial bladder cancer. However, the response to it is limited and its side effects are extensive. Functional single-walled carbon nanotubes (SWNT) have shown promise for tumor-targeted accumulation and low toxicity. In the present study, we performed in vivo and in vitro investigations to determine whether SWNT-based drug delivery could induce high tumor depression in rat bladder cancer and could decrease the side effects of pirarubicin (tetrahydropyranyl-adriamycin, THP). We modified SWNT with phospholipid-branched polyethylene glycol and constructed an SWNT-THP conjugate via a cleavable ester bond. The cytotoxicity of SWNT-THP against the human bladder cancer cell line BIU-87 was evaluated in vitro. Rat bladder cancer in situ models constructed by N-methyl-N-nitrosourea intravesical installation (1 g/L, 2 mg/rat once every 2 weeks for 8 weeks) were used for in vivo evaluation of the cytotoxicity of SWNT and SWNT-THP. Specific side effects in the THP group including urinary frequency (N = 12), macroscopic hematuria (N = 1), and vomiting (N = 7) were identified; however, no side effects were observed with SWNT-THP treatment. Flow cytometry was used to assess the cytotoxicity in vitro and in vivo. Results showed that SWNT alone did not yield significant tumor depression compared to saline (1.74 ± 0.56 and 1.23 ± 0.42%) in vitro. SWNT-THP exhibited higher tumor depression than THP-saline in vitro (74.35 ± 2.56 and 51.24 ± 1.45%) and in vivo (52.46 ± 2.41 and 96.85 ± 0.85%). The present findings indicate that SWNT delivery of THP for the treatment of bladder cancer leads to minimal side effects without loss of therapeutic efficacy. Therefore, this nanotechnology may play a crucial role in the improvement of intravesical treatment of bladder cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preclinical investigations can start with preliminary in vitro studies before using animal models. Following this approach, the number of animals used in preclinical acute toxicity testing can be reduced. In this study, we employed an in-house validated in vitro cytotoxicity test based on the Spielmann approach for toxicity evaluation of the lignan grandisin, a candidate anticancer agent, and its major metabolite. the 4-O-demethylgrandisin, by neutral red uptake (NRU) assay, on mouse fibroblasts Balb/c 3T3 cell line. Using different concentrations of grandisin and its major metabolite (2.31; 1.16; 0.58; 0.29; 0.14; 0.07; 0.04; 0.002 mu M) in Balb/c 3T3-A31 NRU cytotoxicity assay, after incubation for 48 h, we obtained IC(50) values for grandisin and its metabolite of 0.078 and 0.043 mu M, respectively. The computed LD(50) of grandisin and 4-O-demethylgrandisin were 617.72 and 429.95 mg/kg, respectively. Both were classified under the Globally Harmonized System as category 4. Since pharmacological and toxicological data are crucial in the developmental stages of drug discovery, using an in vitro assay we demonstrated that grandisin and its metabolite exhibit distinct toxicity profiles. Furthermore, results presented in this work can contribute to reduce the number of animals required in subsequent pharmacological/toxicological studies. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, two alkaloids isolated from Pterogyne nitens, a plant native to Brazil, have been shown to induce apoptosis in human breast cancer cells. These compounds, pterogynine (PGN) and pterogynidine (PGD), were tested for their effect on a human infiltrating ductal carcinoma cell line (ZR-7531). The cell line was treated with each alkaloid at several concentrations. Time-dependence (with or without recuperation time) and concentration-dependence (in the range 0.25-10 mM) were investigated in cytotoxicity and apoptosis assays. The annexin assay indicated an apparently higher percentage of death by necrosis of malignant cells after 24 h exposure to both P. nitens extracts than the Hoechst assay. Thus, our results in the two tests demonstrated that the Hoechst assay can discriminate between late apoptotic cells and necrosis, whereas the flow cytometry-based annexin V assay cannot. We concluded that PGN and PGD have effective antineoplastic activity against human breast cancer cells in vitro, by inducing programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the oral cavity and reach a large number of individuals, has become an important public health problem. Studies have demonstrated changes in pathway components BMP in various types of cancers as prostate, colon, breast, gastric and OSCCs. Is the current knowledge that these proteins may exert pro-tumor effect in more advanced stages of neoplastic development coming to favor progression and invasion tumor. The inhibition of the signaling pathway BMP-2 through its antagonists, have shown positive results of antitumor activity and use of Noggin may be a novel therapeutic target for cancer. Given this evidence and the few studies with BMP-2, Noggin and OSCC, the objective of this research was to evaluate the effect of BMP-2 and its antagonist Noggin on proliferation and migration cell in line of cell cultures of human tongue squamous cell carcinoma (SCC25). The study was divided in three groups, a control group, where SCC25 cells suffered no treatment, a BMP-2 group, in which cells were treated with 100ng/ml of BMP-2 and a group of cells that were treated with 100ng/ml of Noggin. For the proliferation assay and cell cycle were established three time intervals (24, 48 and 72 hours). Proliferative activity was investigated by trypan blue and cell cycle analysis by staining with propidium iodide flow cytometry. The potential for migration / invasion of SCC25 cells was performing by a cell invasion assay using Matrigel in a 48-hour interval. The proliferation curve showed a higher proliferation in cells treated with BMP-2 in 72 hours (p < 0.05), and lower overgrowth and cell viability in Noggin group. Recombinant proteins favored a greater percentage of cells in cell cycle phase Go/G1 with a statistically significant difference in the interval of 24 hours (p < 0.05). BMP- 2 produced a greater invasion of cells studied as well as its antagonist Noggin inhibits invasion of cells (p < 0.05). Thus, these results indicate that BMP-2 promotes malignant phenotype, dues stimulates proliferation and invasion of SCC25 cells and, its antagonist Noggin may be an alternative treatment, due to inhibit the tumor progression

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo principal da nossa pesquisa foi avaliar o potencial de diferenciação osteogênica de células-tronco mesenquimais (MSC) obtidas da medula óssea do cão. As MSC foram separadas pelo método Ficoll e cultivadas sob duas condições distintas: DMEM baixa glicose ou DMEM/F12, ambos contendo L-glutamina, 20% de SFB e antibióticos. Marcadores de MSC foram testados, confirmando células CD44+ e CD34- através da citometria de fluxo. Para a diferenciação osteogênica, as células foram submetidas a quatro diferentes condições: Grupo 1, as mesmas condições utilizadas para a cultura de células primárias com os meios DMEM baixa glicose suplementado; Grupo 2, as mesmas condições do Grupo 1, mais os indutores de diferenciação dexametasona, ácido ascórbico e b-glicerolfosfato; Grupo 3, células cultivadas com meios DMEM/F12 suplementado; e Grupo 4, nas mesmas condições que no Grupo 3, mais indutores de diferenciação de dexametasona, ácido ascórbico e b-glicerolfosfato. A diferenciação celular foi confirmada através da coloração com alizarin red e da imunomarcação com o anticorpo SP7/Osterix. Nós observamos através da coloração com alizarin red que o depósito de cálcio foi mais evidente nas células cultivadas em DMEM/F12. Além disso, usando a imunomarcação com o anticorpo SP/7Osterix obtivemos positividade em 1:6 células para o Meio DMEM/F12 comparada com 1:12 para o meio DMEM-baixa glicose. Com base nos nossos resultados concluímos que o meio DMEM/F12 é mais eficiente para a indução da diferenciação de células-tronco mesenquimais caninas em promotores osteogênicos. Este efeito provavelmente ocorre em decorrência da maior quantidade de glicose neste meio, bem como da presença de diversos aminoácidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in HepG2 cells. The results obtained by the Ames test did not point out significant results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo principal da nossa pesquisa foi avaliar o potencial de diferenciação osteogênica de células-tronco mesenquimais (MSC) obtidas da medula óssea do cão. As MSC foram separadas pelo método Ficoll e cultivadas sob duas condições distintas: DMEM baixa glicose ou DMEM/F12, ambos contendo L-glutamina, 20% de SFB e antibióticos. Marcadores de MSC foram testados, confirmando células CD44+ e CD34- através da citometria de fluxo. Para a diferenciação osteogênica, as células foram submetidas a quatro diferentes condições: Grupo 1, as mesmas condições utilizadas para a cultura de células primárias com os meios DMEM baixa glicose suplementado; Grupo 2, as mesmas condições do Grupo 1, mais os indutores de diferenciação dexametasona, ácido ascórbico e b-glicerolfosfato; Grupo 3, células cultivadas com meios DMEM/F12 suplementado; e Grupo 4, nas mesmas condições que no Grupo 3, mais indutores de diferenciação de dexametasona, ácido ascórbico e b-glicerolfosfato. A diferenciação celular foi confirmada através da coloração com alizarin red e da imunomarcação com o anticorpo SP7/Osterix. Nós observamos através da coloração com alizarin red que o depósito de cálcio foi mais evidente nas células cultivadas em DMEM/F12. Além disso, usando a imunomarcação com o anticorpo SP/7Osterix obtivemos positividade em 1:6 células para o Meio DMEM/F12 comparada com 1:12 para o meio DMEM-baixa glicose. Com base nos nossos resultados concluímos que o meio DMEM/F12 é mais eficiente para a indução da diferenciação de células-tronco mesenquimais caninas em promotores osteogênicos. Este efeito provavelmente ocorre em decorrência da maior quantidade de glicose neste meio, bem como da presença de diversos aminoácidos.