932 resultados para Fishery for individual species


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Population assessments seldom incorporate habitat information or use previously observed distributions of fish density. Because habitat affects the spatial distribution of fish density and overall abundance, the use of habitat information and previous estimates of fish density can produce more precise and less biased population estimates. In this study, we describe how poststratification can be applied as an unbiased estimator to data sets that were collected under a probability sampling design, typical of many multispecies trawl surveys. With data from a multispecies survey of juvenile flatfish, we show how poststratification can be applied to a data set that was not collected under a probability sampling design, where both the precision and the bias are unknown. For each of four species, three estimates of total abundance were compared: 1) unstratified; 2) poststratified by habitat; and 3) poststratified by habitat and fish density (high fish density and low fish density) in nearby years. Poststratification by habitat gave more precise and (or) less design-biased estimates than an unstratified estimator for all species in all years. Poststratification by habitat and fish density produced the most precise and representative estimates when the sample size in the high fish-density and low fish-density strata were sufficient (in this study, n≥20 in the high fish-density stratum, n≥9 in the low fish-density stratum). Because of the complexities of statistically testing the annual stratified data, we compared three indices of abundance for determining statistically significant changes in annual abundance. Each of the indices closely approximated the annual differences of the poststratified estimates. Selection of the most appropriate index was dependent upon the species’ density distribution within habitat and the sample size in the different habitat areas. The methods used in this study are particularly useful for estimating individual species abundance from multispecies surveys and for retrospective st

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular-based approaches for shark species identification have been driven largely by issues specific to the fishery. In an effort to establish a more comprehensive identification data set, we investigated DNA sequence variation of a 1.4-kb region from the mitochondrial genome covering partial sequences from the 12S rDNA, 16S rDNA, and the complete valine tRNA from 35 shark species from the Atlantic fishery. Generally, within-species variability was low in relation to interspecific divergence because species haloptypes formed monophyletic groups. Phylogenetic analyses resolved ordinal relationships among Carcharhiniformes and Lamniformes, and revealed support for the families Sphyrnidae and Triakidae (within Carcharhiniformes) and Lamnidae and Alopidae (within Lamniformes). The combination of limited intraspecific variability and sufficient between-species divergence indicates that this locus is suitable for species identification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The U.S. Atlantic coast and Gulf of Mexico commercial shark fisheries have greatly expanded over the last 30 years, yet fishery managers still lack much of the key information required to accurately assess many shark stocks. Fishery observer programs are one tool that can be utilized to acquire this information. The Commercial Shark Fishery Observer Program monitors the U.S. Atlantic coast and Gulf of Mexico commercial bottom longline (BLL) large coastal shark fishery. Data gathered by observers were summarized for the 10-year period, 1994 to 2003. A total of 1,165 BLL sets were observed aboard 96 vessels, with observers spending a total of 1,509 days at sea. Observers recorded data regarding the fishing gear and methods used, species composition, disposition of the catch, mortality rates, catch per unit of effort (sharks per 10,000 hook hours), and bycatch of this fishery. Fishing practices, species composition, and bycatch varied between regions, while catch rates, mortality rates, and catch disposition varied greatly between species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the Species management in aquatic Habitats WRc Nov 1993 produced by the National Rivers Authority (NRA) in 1993. This report identified key rare and nuisance species of interest to the NRA and prioritised research needs to develop conservation strategies for these species. The NRA has in the past adopted a habitat maintenance and protection approach to conservation paying less attention at individual species. There is a risk that conservation based on a habitat management policy will no further the conservation of certain species. In addition, certain ‘nuisance’ species cause problems for conservation by having a negative impact on more valued species or ecosystems. Through the combination of the review of current legislation and literature and consultation with NRA staff, this project identified key rare and nuisance species of interest to the NRA and prioritised research needs to develop conservation strategies for these species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Billfishes are a component of offshore ecosystems; thus it is important to quantify the impact of the tuna fishery on these species in the world’s ocean. The aim of this study was to assess the bycatch of billfishes generated by the tropical tuna purse-seine fishery in the eastern Atlantic Ocean. Information on bycatch was collected by observers at sea during the European Union Bigeye Program. With a total of 62 observers’ trips, conducted on Spanish and French vessels between June 1997 and May 1999, this project is the biggest observer program ever carried out in the European tuna purse-seine fishery. This study showed that billfish bycatch by the purse seiners is very low (less than 0.021% of the total tuna catches and less than 10% of the total billfish catches currently reported). A Monte Carlo simulation was performed to account for some uncertainties in the fishing strategies of purse seiners operating in this ocean. One of the findings of this study indicated that the temporary moratorium on fishing with FADs (fish aggregating devices), adopted by the European purse-seine fishery in the eastern Atlantic Ocean, produced a decrease in incidental catches of marlins from 600–700 metric tons (t) to less than 300 t. In contrast, this trend was reversed for sailfishes, for which the bycatch increased from 25 t to 45 t. The difficulty of defining indices that express the conservation status in marine fishes and that gauge key ecosystem parameters and the need to promote an ecosystem approach for large-pelagic-resource management which takes into account biologic and socioeconomic criteria are briefly discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allograft mantle transplantations were studied in six species of freshwater mussels~ Lamellidens marginalis, L. corrianus~ L. jenkinsianus_, L. phenchooganjensis~ Parreysia corrugata and P. favidens by transplanting foreign mantle tissue into the mantle tissue of a host mussel. After three months of rearing, maximum survivability and pearl formation were observed in L. marginalis and L. jenkinsianus followed by L. corrianus and L. phenchooganjensis. Very poor results were observed in case of Parreysia corrugata and P. favidens. In addition to the natural pearl producing capacity of individual species, survivability and pearl production were related to the size of the mussel species. L. marginalis has been identified as the best species for mantle transplantation in Bangladesh.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g., nutrients and light). Here, we show that resource competition is a plausible mechanism for explaining clumpy distribution on individual species volume (a proxy for the niche) of estuarine phytoplankton communities ranging from North America to South America and Europe, supporting the Emergent Neutrality hypothesis. Furthermore, such a clumpy distribution was also observed throughout the Holocene in diatoms from a sediment core. A Lotka-Volterra competition model predicted position in the niche axis and functional affiliation of dominant species within and among clumps. Results support the coexistence of functionally equivalent species in ecosystems and indicate that resource competition may be a key process to shape the size structure of estuarine phytoplankton, which in turn drives ecosystem functioning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hutchinson's (1957; Cold Spring Harbour Symp Quant Biol 22:415-427) niche concept is being used increasingly in the context of global change, and is currently applied to many ecological issues including climate change, exotic species invasion and management of endangered species. For both the marine and terrestrial realms, there is a growing need to assess the breadth of the niches of individual species and to make comparisons among them to forecast the species' capabilities to adapt to global change. In this paper, we describe simple non-parametric multivariate procedures derived from a method originally used in climatology to (1) evaluate the breadth of the ecological niche of a species and (2) examine whether the niches are significantly separated. We first applied the statistical procedures to a simple fictive example of 3 species separated by 2 environmental factors in order to describe the technique. We then used it to quantify and compare the ecological niche of 2 key-structural marine zooplankton copepod species, Calanus finmarchicus and C. helgolandicus, in the northern part of the North Atlantic Ocean using 3 environmental factors. The test demonstrates that the niches of both species are significantly separated and that the coldwater species has a niche larger than that of its warmer-water congeneric species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1.There are tens of thousands of species of phytoplankton found throughout the tree of life. Despite this diversity, phytoplankton are often aggregated into a few functional groups according to metabolic traits or biogeochemical role. We investigate the extent to which phytoplankton species dynamics are neutral within functional groups. 2.Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at the functional group level leading to largely predictable patterns of seasonal succession. It is much more difficult to make general statements about the dynamics of individual species. 3.We use a 7 year time-series at station L4 in the Western English Channel with 57 diatom and 17 dinoflagellate species enumerated weekly to test if the abundance of diatom and dinoflagellate species vary randomly within their functional group envelope or if each species is driven uniquely by external factors. 4.We show that the total biomass of the diatom and dinoflagellate functional groups is well predicted by irradiance and temperature and quantify trait values governing the growth rate of both functional groups. The biomass dynamics of the functional groups are not neutral and each has their own distinct responses to environmental forcing. Compared to dinoflagellates, diatoms have faster growth rates, and grow faster under lower irradiance, cooler temperatures, and higher nutrient conditions. 5.The biomass of most species vary randomly within their functional group biomass envelope, most of the time. As a consequence, modelers will find it difficult to predict the biomass of most individual species. Our analysis supports the approach of using a single set of traits for a functional group and suggests that it should be possible to determine these traits from natural communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding climate change and its potential impact on species, populations and communities is one of the most pressing questions of twenty-fi rst-century conservation planning. Palaeobiogeographers working on Cenozoic fossil records and other lines of evidence are producing important insights into the dynamic nature of climate and the equally dynamic response of species, populations and communities. Climatic variations ranging in length from multimillennia to decades run throughout the palaeo-records of the Quaternary and earlier Cenozoic and have been shown to have had impacts ranging from changes in the genetic structure and morphology of individual species, population sizes and distributions, community composition to large-scale bio-diversity gradients. The biogeographical impacts of climate change may be due directly to the effects of alterations in temperature and moisture on species, or they may arise due to changes in factors such as disturbance regimes. Much of the recent progress in the application of palaeobiogegraphy to issues of climate change and its impacts can be attributed to developments along a number of still advancing methodological frontiers. These include increasingly finely resolved chronological resolution, more refi ned atmosphere-biosphere modelling, new biological and chemical techniques in reconstructing past species distributions and past climates, the development of large and readily accessible geo-referenced databases of biogeographical and climatic information, and new approaches in fossil morphological analysis and new molecular DNA techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many assemblages contain numerous rare species, which can show large increases in abundances. Common species can become rare. Recent calls for experimental tests of the causes and consequences of rarity prompted us to investigate competition between co-existing rare and common species of intertidal gastropods. In various combinations, we increased densities of rare gastropod species to match those of common species to evaluate effects of intra- and interspecific competition on growth and survival of naturally rare or naturally common species at small and large densities. Rarity per se did not cause responses of rare species to differ from those of common species. Rare species did not respond to the abundances of other rare species, nor show consistently different responses from those of common species. Instead, individual species responded differently to different densities, regardless of whether they are naturally rare or abundant. This type of experimental evidence is important to be able to predict the effects of increased environmental variability on rare as opposed to abundant species and therefore, ultimately, on the structure of diverse assemblages. © 2012 Inter-Research.


--------------------------------------------------------------------------------

Reaxys Database Information|

--------------------------------------------------------------------------------

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated relationships between richness patterns of rare and common grassland species and environmental factors, focussing on comparing the degree to which the richness patterns of rare and common species are determined by simple environmental variables. Using data collected in the Machair grassland of the Outer Hebrides of Scotland, we fitted spatial regression models using a suite of grazing, soil physicochemical and microtopographic covariates, to nested sub-assemblages of vascular and non-vascular species ranked according to rarity. As expected, we found that common species drive richness patterns, but rare vascular species had significantly stronger affinity for high richness areas. After correcting for the prevalence of individual species distributions, we found differences between common and rare species in 1) the amount of variation explained: richness patterns of common species were better summarised by simple environmental variables, 2) the associations of environmental variables with richness showed systematic trends between common and rare species with coefficient sign reversal for several factors, and 3) richness associations with rare environments: richness patterns of rare vascular species significantly matched rare environments but those of non-vascular species did not. Richness patterns of rare species, at least in this system, may be intrinsically less predictable than those of common species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change. © 2012 The Royal Society.