857 resultados para Finite-precision computation
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.
Resumo:
We adopt the Dirac model for quasiparticles in graphene and calculate the finite-temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature, the Casimir interaction in such system is just one-half of that for two ideal conductors separated by the same distance. In this limit, a single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while the contribution of the TM mode saturates at the ideal-metal value. The behavior of the Casimir interaction for intermediate temperatures and separations accessible in experiments is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine-structure constant and the Fermi velocity.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Resumo:
We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.
Resumo:
The airflow velocities and pressures are calculated from a three-dimensional model of the human larynx by using the finite element method. The laryngeal airflow is assumed to be incompressible, isothermal, steady, and created by fixed pressure drops. The influence of different laryngeal profiles (convergent, parallel, and divergent), glottal area, and dimensions of false vocal folds in the airflow are investigated. The results indicate that vertical and horizontal phase differences in the laryngeal tissue movements are influenced by the nonlinear pressure distribution across the glottal channel, and the glottal entrance shape influences the air pressure distribution inside the glottis. Additionally, the false vocal folds increase the glottal duct pressure drop by creating a new constricted channel in the larynx, and alter the airflow vortexes formed after the true vocal folds. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A finite element homogenization method for a shear actuated d(15) macro-fibre composite (MFC) made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite, electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material properties. The methodology is first validated for the MFC active layer only, made of piezoceramic fibre and epoxy, through comparison with previously published analytical results. Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. However, it is found that the piezoelectric charge constant d(15) is less affected by the softer layers required by the MFC packaging.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
The behaviour of reinforced concrete members is affected by the slipping of steel bars inserted in the concrete matrix. A tension-stiffening effect and crack evolution occur from the beginning of slipping; thus, the assessment of those phenomena requires the introduction of a bond-slip interaction model. This work presents a beam-layered model, including the constitutive relationships of materials and their interaction, according to the CEB-FIP Model Code 1990. To eliminate the finite element sub-division procedure, a continuous slip function is imposed into the element domain. The results are continuous descriptions of bond stress in the steel-concrete interface, as well as concrete and steel stresses along the element. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Chloride attack in marine environments or in structures where deicing salts are used will not always show profiles with concentrations that decrease from the external surface to the interior of the concrete. Some profiles show an increase in chloride concentrations from when a peak is formed. This type of profile must be analyzed in a different way from the traditional model of Fick`s second law to generate more precise service life models. A model for forecasting the penetration of chloride ions as a function of time for profiles having formed a peak. To confirm the efficiency of this model, it is necessary to observe the behavior of a chloride profile with peak in a specific structure over a period of time. To achieve this, two chloride profiles with different ages (22 and 27 years) were extracted from the same structure. The profile obtained from the 22-year sample was used to estimate the chloride profile at 27 years using three models: a) the traditional model using Fick`s second law and extrapolating the value of C(S)-external surface chloride concentration; b) the traditional model using Fick`s second law and shifting the x-axis to the peak depth; c) the previously proposed model. The results from these models were compared with the actual profile measured in the 27-year sample and the results were analyzed. The model was presented with good precision for this study of case, requiring to be tested with other structures in use.
Resumo:
For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.
Resumo:
The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.