921 resultados para Finite-element-method
Resumo:
For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.
Resumo:
This paper presents a 3D simulation system which is employed in order to predict cutting forces and tool deflection during end-milling operation. In order to verify the accuracy of 3D simulation, results (cutting forces and tool deflection) were compared with those based on the theoretical relationships, in terms of agreement with experiments. The results obtained indicate that the simulation is capable of predicting the cutting forces and tool deflection.
Resumo:
The ability to predict the mechanical behavior of polymer composites is crucial for their design and manufacture. Extensive studies based on both macro- and micromechanical analyses are used to develop new insights into the behavior of composites. In this respect, finite element modeling has proved to be a particularly powerful tool. In this article, we present a Galerkin scheme in conjunction with the penalty method for elasticity analyses of different types of polymer composites. In this scheme, the application of Green's theorem to the model equation results in the appearance of interfacial flux terms along the boundary between the filler and polymer matrix. It is shown that for some types of composites these terms significantly affect the stress transfer between polymer and fillers. Thus, inclusion of these terms in the working equations of the scheme preserves the accuracy of the model predictions. The model is used to predict the most important bulk property of different types of composites. Composites filled with rigid or soft particles, and composites reinforced with short or continuous fibers are investigated. For each case, the results are compared with the available experimental results and data obtained from other models reported in the literature. Effects of assumptions made in the development of the model and the selection of the prescribed boundary conditions are discussed.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
The finite element method (FEM) is now developed to solve two-dimensional Hartree-Fock (HF) equations for atoms and diatomic molecules. The method and its implementation is described and results are presented for the atoms Be, Ne and Ar as well as the diatomic molecules LiH, BH, N_2 and CO as examples. Total energies and eigenvalues calculated with the FEM on the HF-level are compared with results obtained with the numerical standard methods used for the solution of the one dimensional HF equations for atoms and for diatomic molecules with the traditional LCAO quantum chemical methods and the newly developed finite difference method on the HF-level. In general the accuracy increases from the LCAO - to the finite difference - to the finite element method.
Resumo:
A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
We present spin-polarized Hartree-Fock-Slater calculations performed with the highly accurate numerical finite element method for the atoms N and 0 and the diatomic radical OH as examples.
Resumo:
We report on the solution of the Hartree-Fock equations for the ground state of the H_2 molecule using the finite element method. Both the Hartree-Fock and the Poisson equations are solved with this method to an accuracy of 10^-8 using only 26 x 11 grid points in two dimensions. A 41 x 16 grid gives a new Hartree-Fock benchmark to ten-figure accuracy.
Resumo:
We present the Finite-Element-Method (FEM) in its application to quantum mechanical problems solving for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations of molecules like N_2 and C0 have been obtained. The accuracy achieved with less then 5000 grid points for the total energies of these systems is 10_-8 a.u., which is demonstrated for N_2.
Resumo:
We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.