906 resultados para Finite elements methods, Radial basis function, Interpolation, Virtual leaf, Clough-Tocher method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length - the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication processes are vital in the lifecycle of BPM projects. With this in mind, much research has been performed into facilitating this key component between stakeholders. Amongst the methods used to support this process are personalized process visualisations. In this paper, we review the development of this visualization trend, then, we propose a theoretical analysis framework based upon communication theory. We use this framework to provide theoretical support to the conjecture that 3D virtual worlds are powerful tools for communicating personalised visualisations of processes within a workplace. Meta requirements are then derived and applied, via 3D virtual world functionalities, to generate example visualisations containing personalized aspects, which we believe enhance the process of communcation between analysts and stakeholders in BPM process (re)design activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiff ened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress-based hybrid finite element methods. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements. The conventional return-mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field.We discuss the formulation and implementation of the consistent tangent tensor, and the return-mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.