938 resultados para Filter Designs
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.
Resumo:
Dose-finding trials are a form of clinical data collection process in which the primary objective is to estimate an optimum dose of an investigational new drug when given to a patient. This thesis develops and explores three novel dose-finding design methodologies. All design methodologies presented in this thesis are pragmatic. They use statistical models, incorporate clinicians' prior knowledge efficiently, and prematurely stop a trial for safety or futility reasons. Designing actual dose-finding trials using these methodologies will minimize practical difficulties, improve efficiency of dose estimation, be flexible to stop early and reduce possible patient discomfort or harm.
Resumo:
Dose-finding designs estimate the dose level of a drug based on observed adverse events. Relatedness of the adverse event to the drug has been generally ignored in all proposed design methodologies. These designs assume that the adverse events observed during a trial are definitely related to the drug, which can lead to flawed dose-level estimation. We incorporate adverse event relatedness into the so-called continual reassessment method. Adverse events that have ‘doubtful’ or ‘possible’ relationships to the drug are modelled using a two-parameter logistic model with an additive probability mass. Adverse events ‘probably’ or ‘definitely’ related to the drug are modelled using a cumulative logistic model. To search for the maximum tolerated dose, we use the maximum estimated toxicity probability of these two adverse event relatedness categories. We conduct a simulation study that illustrates the characteristics of the design under various scenarios. This article demonstrates that adverse event relatedness is important for improved dose estimation. It opens up further research pathways into continual reassessment design methodologies.
Resumo:
This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.
Resumo:
The paper provides a systematic approach to designing the laboratory phase of a multiphase experiment, taking into account previous phases. General principles are outlined for experiments in which orthogonal designs can be employed. Multiphase experiments occur widely, although their multiphase nature is often not recognized. The need to randomize the material produced from the first phase in the laboratory phase is emphasized. Factor-allocation diagrams are used to depict the randomizations in a design and the use of skeleton analysis-of-variance (ANOVA) tables to evaluate their properties discussed. The methods are illustrated using a scenario and a case study. A basis for categorizing designs is suggested. This article has supplementary material online.
Resumo:
PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s2 ) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 +/- 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Principles in the design of multiphase experiments with a later laboratory phase: Orthogonal designs
Resumo:
Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.
Resumo:
There is a wide range of potential study designs for intervention studies to decrease nosocomial infections in hospitals. The analysis is complex due to competing events, clustering, multiple timescales and time-dependent period and intervention variables. This review considers the popular pre-post quasi-experimental design and compares it with randomized designs. Randomization can be done in several ways: randomization of the cluster [intensive care unit (ICU) or hospital] in a parallel design; randomization of the sequence in a cross-over design; and randomization of the time of intervention in a stepped-wedge design. We introduce each design in the context of nosocomial infections and discuss the designs with respect to the following key points: bias, control for nonintervention factors, and generalizability. Statistical issues are discussed. A pre-post-intervention design is often the only choice that will be informative for a retrospective analysis of an outbreak setting. It can be seen as a pilot study with further, more rigorous designs needed to establish causality. To yield internally valid results, randomization is needed. Generally, the first choice in terms of the internal validity should be a parallel cluster randomized trial. However, generalizability might be stronger in a stepped-wedge design because a wider range of ICU clinicians may be convinced to participate, especially if there are pilot studies with promising results. For analysis, the use of extended competing risk models is recommended.