941 resultados para Filmes ultrafinos
Resumo:
The DGT technique allows one to measure quantitatively free and labile metal species in aquatic systems. Nevertheless, for this approach, knowledge is required of the diffusion coefficients of the analytes in a diffusive layer. In this study, the diffusion coefficients of Hg(II), As(III), Mn(II), Mg(II), Cu(II), Cd(II) were determined in agarose gel and those of Ba(II), Cd(II), Cu(II), Mg(II), Mn(II) e Zn(II) in cellulose acetate membranes. These materials presented good performance and the reported results can be used as a data base for further DGT studies.
Resumo:
The following research aims to address the image of the ordinary person in the films of the Pontos de Cultura (Culture Points) in Natal-RN. About ten years the Federal Government of Brazil created the Cultura Viva (Living Culture) program. It enabled the State to support financially civil society organizations that had developed cultural works in communities across the country. Along with the resources the program developed, in parallel, another action, Cultura Digital (Digital culture), intended to bring the tools of digital technology for people who have never had access to them. As a result of these initiatives were produced short films. These films were characterized by the presence of the image of the ordinary person. The creation of this type of cultural product was benefited by state initiative, however, it was inserted within a historical, political and cultural construction whose research was necessary for this image understood to be understood by its importance: it is the expression of emancipation the ordinary person and not just as a consumer of culture, it identifies them as the protagonists of the society and recognizes their vital role in its organization
Resumo:
Este trabalho teve como objetivo avaliar diferentes temperaturas e coberturas na conservação de frutos de pimentão 'Magali-R'. No primeiro experimento, avaliou-se o uso de filme de PVC ou cera, e os frutos foram armazenados a 20ºC e 66%UR, e no segundo experimento associou-se o filme de PVC e cera, com armazenamento a 22°C (67% UR); 12ºC (90% UR) e 5ºC (87% UR). Acompanhou-se a evolução da qualidade dos frutos avaliando-se a massa fresca, a aparência, o aparecimento de podridões e os teores de sólidos solúveis, acidez titulável e ácido ascórbico. A proteção dos pimentões com cera ou filme de PVC foi favorável à manutenção da aparência e da massa fresca, e protegeu-os contra podridões, sem prejuízos aos teores de sólidos solúveis, acidez titulável e ácido ascórbico, com aumento significativo na vida útil para até 33 dias com o armazenamento a 5°C.
Resumo:
Plasma DC hollow cathode has been used for film deposition by sputtering with release of neutral atoms from the cathode. The DC Plasma Ar-H2 hollow cathode currently used in the industry has proven to be effective in cleaning surfaces and thin film deposition when compared to argon plasma. When we wish to avoid the effects of ion bombardment on the substrate discharge, it uses the post-discharge region. Were generated by discharge plasma of argon and hydrogen hollow cathode deposition of thin films of titanium on glass substrate. The optical emission spectroscopy was used for the post-discharge diagnosis. The films formed were analyzed by mechanical profilometry technique. It was observed that in the spectrum of the excitation lines of argon occurred species. There are variations in the rate of deposition of titanium on the glass substrate for different process parameters such as deposition time, distance and discharge working gases. It was noted an increase in intensity of the lines of argon compared with the lines of titanium. Deposition with argon and hydrogen in glass sample observed a higher rate deposition of titanium as more closer the sample was in the discharge
Resumo:
Formulation Additives on Formation of Films isolated from Ethylcellulose. Physicochemical and Morphological Studies. In this work were developed free films from Surelease (R), additives alpha-GOS (alfa-glucooligosaccharide) and/or Tween (R) 80 in aqueous solution. It was obtained by Teflon plates casting process. The free films were characterized by thermal analysis (DSC and TGA), infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). DSC and TO analysis showed that the additives do not influenced in the thermal stability of Surelease (R) films. SEM analysis observed homogeneous morphological characteristics and phase detachment absence. FTIR-ATR spectra were used to confirm the physical mixture between the components of films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Today, one of the topics that attracts interest of the scientific community is the understanding of magnetic properties of magnetic systems with reduced dimensions, in particular, ferromagnetic thin films. In this case, the comprehension and control of these properties, as well as the development of routes to obtain them, are crucial issues in many aspects of current and future technologies for storage and transmission of information in the electro-electronic industry. There are several materials that exhibit soft magnetic properties, and we highlight the amorphous alloys and that ones obtained by partial crystallization, so-called nanocrystalline materials. The production of these alloys as magnetic ribbons is very common in scientific and technological area, but there are just a few works related to the production of these alloys as thin films. In this work, we studied the quasi-static magnetic properties of ferromagnetic thin films based on FeCuNbSiB in a wide range of thicknesses, from 20 to 500 nm, produced by sputtering. In particular, after the structural characterization performed via X-ray diffraction, the magnetic properties of the sets of samples were investigated using experimental magnetization curve, obtained using a vibrating sample magnetometer, as well as through theoretical curves obtained by theoretical modeling and numerical computation. The modeling process is based on the Stoner Wohlfarth model applied to three dimensions, and adds some energy terms, using as reference experimental results of magnetization. In this case, from the comparison between theoretical and experimental results and the analysis of the constant anisotropy behavior as a function of film thickness, we aim to obtain further information on the magnetization process of the samples, to identify routes for the production of thin films and develop a theoretical to films to use it, in the future, in the obtainment of the theoretical curves of some magnetic measurements, such as magnetoimpedance and magnetoresistance
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In the present work we use a plasma jet system with a hollow cathode to deposit thin TiO2 films on silicon substrates as alternative at sol-gel, PECVD, dip-coating e magnetron sputtering techniques. The cylindrical cathode, made from pure titanium, can be negatively polarized between 0 e 1200 V and supports an electrical current of up to 1 A. An Ar/O2 mixture, with a total flux of 20 sccm and an O2 percentage ranging between 0 and 30%, is passed through a cylindrical hole machined in the cathode. The plasma parameters and your influence on the properties of deposited TiO2 films and their deposition rate was studied. When discharge occurs, titanium atoms are sputtered/evaporated. They are transported by the jet and deposited on the Si substrates located on the substrate holder facing the plasma jet system at a distance ranging between10 and 50 mm from the cathode. The working pressure was 10-3 mbar and the deposition time was 10 -60 min. Deposited films were characterized by scanning electron microscopy and atomic force microscopy to check the film uniformity and morphology and by X-ray diffraction to analyze qualitatively the phases present. Also it is presented the new dispositive denominate ionizing cage, derived from the active screen plasma nitriding (ASPN), but based in hollow cathode effect, recently developed. In this process, the sample was involved in a cage, in which the cathodic potential was applied. The samples were placed on an insulator substrate holder, remaining in a floating potential, and then it was treated in reactive plasma in hollow cathode regime. Moreover, the edge effect was completely eliminated, since the plasma was formed on the cage and not directly onto the samples and uniformity layer was getting in all sampl
Resumo:
Iron nitrite films, with hundred of nanometers thick, were deposited using the Cathodic cage plasma nitriding method, with a N2/H2 plasma, over a common glass substract. The structure, surface morphology and magnetic properties were investigated using X-ray diffractometry (XRD), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). XRD shows the formation of γ FeN phase and a combination of ζFe2N + ɛFe3N phases. The film s saturation magnetization and coercivity depends on morphology, composition, grain size and treatment temperature. Temperature raising from 250 ºC to 350 ºC were followed by an increase in saturation magnetization and film s surface coercivity on the parallel direction in relative proportion. This fact can be attributed to the grain sizes and to the different phases formed, since iron rich fases, like the ɛFe3N phase, emerges more frequently on more elevated treatment s temperature. Using this new and reasonably low cost method, it was possible to deposit films with both good adhesion and good magnetic properties, with wide application in magnetic devices
Resumo:
The research behind this master dissertation started with the installation of a DC sputtering system, from its first stage, the adaptation of a refrigerating system, passing by the introduction of a heating system for the chamber using a thermal belt, until the deposition of a series of Fe/MgO(100) single crystal nanometric film samples. The deposition rates of some materials such as Fe, Py and Cu were investigated through an Atomic Force Microscope (AFM). For the single crystal samples, five of them have the same growth parameters and a thickness of 250Å, except for the temperature, which varies from fifty degrees from one to another, from 100ºC to 300ºC. Three other samples also have the same deposition parameters and a temperature of 300ºC, but with thickness of 62,5Å, 150Å, and 250Å. Magneto-optical Kerr Effect (MOKE) of the magnetic curves measurements and Ferromagnetic Resonance (FMR) were made to in order to study the influence of the temperature and thickness on the sample s magnetic properties. In the present dissertation we discuss such techniques, and the experimental results are interpreted using phenomenological models, by simulation, and discussed from a physical point of view, taking into account the system s free magnetic energy terms. The results show the growth of the cubic anisotropy field (Hac) as the sample s deposition temperature increases, presenting an asymptotic behavior, similar to the characteristic charging curve of a capacitor in a RC circuit. A similar behavior was also observed for the Hac due to the increase in the samples thicknesses. The 250˚A sample, growth at 300°C, presented a Hac field close to the Fe bulk value
Resumo:
Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed
Resumo:
The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells