674 resultados para Fibromuscular Dysplasia
Resumo:
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED.
Resumo:
Progressive pseudorheumatoid dysplasia (PPRD) is a genetic, non-inflammatory arthropathy caused by recessive loss of function mutations in WISP3 (Wnt1-inducible signaling pathway protein 3; MIM 603400), encoding for a signaling protein. The disease is clinically silent at birth and in infancy. It manifests between the age of 3 and 6 years with joint pain and progressive joint stiffness. Affected children are referred to pediatric rheumatologists and orthopedic surgeons; however, signs of inflammation are absent and anti-inflammatory treatment is of little help. Bony enlargement at the interphalangeal joints progresses leading to camptodactyly. Spine involvement develops in late childhood and adolescence leading to short trunk with thoracolumbar kyphosis. Adult height is usually below the 3rd percentile. Radiographic signs are relatively mild. Platyspondyly develops in late childhood and can be the first clue to the diagnosis. Enlargement of the phalangeal metaphyses develops subtly and is usually recognizable by 10 years. The femoral heads are large and the acetabulum forms a distinct "lip" overriding the femoral head. There is a progressive narrowing of all articular spaces as articular cartilage is lost. Medical management of PPRD remains symptomatic and relies on pain medication. Hip joint replacement surgery in early adulthood is effective in reducing pain and maintaining mobility and can be recommended. Subsequent knee joint replacement is a further option. Mutation analysis of WISP3 allowed the confirmation of the diagnosis in 63 out of 64 typical cases in our series. Intronic mutations in WISP3 leading to splicing aberrations can be detected only in cDNA from fibroblasts and therefore a skin biopsy is indicated when genomic analysis fails to reveal mutations in individuals with otherwise typical signs and symptoms. In spite of the first symptoms appearing in early childhood, the diagnosis of PPRD is most often made only in the second decade and affected children often receive unnecessary anti-inflammatory and immunosuppressive treatments. Increasing awareness of PPRD appears to be essential to allow for a timely diagnosis. © 2012 Wiley Periodicals, Inc.
Resumo:
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.
Resumo:
We and others have reported mutations in LONP1, a gene coding for a mitochondrial chaperone and protease, as the cause of the human CODAS (cerebral, ocular, dental, auricular and skeletal) syndrome (MIM 600373). Here, we delineate a similar but distinct condition that shares the epiphyseal, vertebral and ocular changes of CODAS but also included severe microtia, nasal hypoplasia, and other malformations, and for which we propose the name of EVEN-PLUS syndrome for epiphyseal, vertebral, ear, nose, plus associated findings. In three individuals from two families, no mutation in LONP1 was found; instead, we found biallelic mutations in HSPA9, the gene that codes for mHSP70/mortalin, another highly conserved mitochondrial chaperone protein essential in mitochondrial protein import, folding, and degradation. The functional relationship between LONP1 and HSPA9 in mitochondrial protein chaperoning and the overlapping phenotypes of CODAS and EVEN-PLUS delineate a family of "mitochondrial chaperonopathies" and point to an unexplored role of mitochondrial chaperones in human embryonic morphogenesis.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.
Resumo:
A technique to restore acetabular anatomy by deepening the acetabular cavity and reconstructing the femoral head ligament and the joint capsule was tested on nine large breed dogs with severe hip dysplasia and acute subdislocation or dislocation. The technique consisted of two phases. First, all dogs were submitted to bilateral pectinotomy. In a second surgical intervention on the same dogs the acetabulum was approached and deepened, and the femoral head ligament and the joint capsule were reconstructed. In general, within 30 days of the surgery dogs could stand on the operated member to walk. Except for two dogs, all the others recovered pelvic member locomotive ability within 60-90 days after surgery. It is concluded that acetabuloplasty is a good alternative for treatment of severe canine hip dysplasia.
Resumo:
We describe 27 subjects (11 women) from five generations of a family with an apparently hitherto undescribed ectodermal dysplasia. All of them presented dental and/or nail alterations only. A genetic analysis of the family suggests an autosomal dominant gene. Differential diagnosis considered eight conditions belonging to the same odonto-onychic (2-3) subgroup, as well as Fried's tooth and nail syndrome and hypodontia and nail dysgenesis (both in 1-2-3 subgroup).
Resumo:
A Brazilian female infant presented delayed psychomotor development, skin pigmentary dysplasia and some dysmorphic features. Chromosome analysis from peripheral blood culture was normal, but the karyotype from skin fibroblasts revealed mosaicism for trisomy 13. This case demonstrates the relevance of performing chromosomal analysis of skin fibroblasts in patients with mental retardation, associated with pigmentary dysplasia of the skin and a normal karyotype in peripheral blood lymphocytes. To our knowledge, it is the first report of trisomy 13 demonstrated only in skin fibroblasts.
Resumo:
Women living in Latin American countries bear a disproportionate burden of cervical cancer, a condition caused by infection with the human papillomavirus (HPV). We performed a study in Santa Elena, Guayas (currently Santa Elena Province), Ecuador, to determine how often HPV could be detected in women attending a private cancer screening clinic. Participants underwent a Pap test, and vaginal and cervical swabs were performed for HPV testing by the polymerase chain reaction (PCR). Each participant completed a verbally administered survey. The mean age of 302 participants was 37.7 years (range 18 to 78 years). The majority of cervical and vaginal specimens contained sufficient DNA to perform PCR. Overall, 24.2% of the participants had either a cervical or vaginal swab that tested positive for HPV. In general, there was a good correlation between the HPV types detected in the cervical and vaginal swabs from the participants, but vaginal swabs were more likely to contain HPV DNA than were cervical swabs. The high-risk HPV types 16, 52, 58, and 59 and the low-risk HPV types 62, 71, 72, and 83 were the most frequently detected HPV types. The number of lifetime sexual partners was positively associated with detection of any HPV type, detection of oncogenic HPV, and abnormal Pap smears. Further studies are needed to determine if these results are representative of all Ecuadorian women and to determine if cervical cancers in Ecuadorian women are caused by the same HPV types found in the swab specimens obtained in this study.
Resumo:
Introduction: Le supplément d’oxygène et la nutrition parentérale (NP) sont les deux sources majeures de stress oxydant chez le nouveau-né. Lors de la détoxification des oxydants, le potentiel redox du glutathion s’oxyde. Notre hypothèse est que le supplément d’oxygène et la durée de la NP sont associés à un potentiel redox plus oxydé et à une augmentation de la sévérité de la dysplasie bronchopulmonaire (DBP). Patients et Méthodes: Une étude observationnelle prospective incluant des enfants de moins de 29 semaines d’âge gestationnel. Les concentrations sanguines de GSH et GSSG à jour 6-7 et à 36 semaines d’âge corrigé étaient mesurées par électrophorèse capillaire et le potentiel redox était calculé selon l’équation de Nernst. La sévérité de la DBP correspondait à la définition du NICHD. Résultats: Une FiO2≥ 25% au 7ième jour de vie ainsi que plus de 14 jours de NP sont significativement associés à un potentiel redox plus oxydé et à une DBP plus sévère. Ces relations sont indépendantes de l’âge de gestation et de la gravité de la maladie initiale. La corrélation entre le potentiel redox et la sévérité de la DBP n’est pas significative. La durée de la NP était responsable de 15% de la variation du potentiel redox ainsi que de 42% de la variation de la sévérité de la DPB. Conclusion: Ces résultats suggèrent que l’oxygène et la NP induisent un stress oxydant et que les stratégies visant une utilisation plus judicieuse de l’oxygène et de la NP devraient diminuer la sévérité de la DBP.
Resumo:
Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.
Resumo:
Here we report on 10 male patients with frontonasal dysplasia, cleft lip/palate, mental retardation, lack of language acquisition, and severe central nervous system involvement. Imaging studies disclosed absence of the corpus callosum, midline cysts, and an abnormally modeled cerebellum. Neuronal heterotopias were present in five patients and parieto-occipital encephalocele in three patients. We suggest that this pattern found exclusively in males, most likely represents a newly recognized syndrome distilled from the group of disorders subsumed under frontonasal dysplasia. (C) 2009 Wiley-Liss, Inc.