927 resultados para Fibras têxteis
Resumo:
The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results
Resumo:
In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
Nowadays, when accidents with oil tanker or shore tanks occur and there is oil spill, some arrangements are made in order to repress and to fix the situation. For the containment, barriers or detours are usually made of synthetic materials such as polyurethane foam. In order to clear water away, techniques like in loco burning, biodegradant agents, dispersant agents and sorbent materials application are used. The most of the sorbent materials are also synthetic and they are used because it is easy to store them and their availability in market. This dissertation introduces the study of vegetable fibers of pineapple leaf fibers (Ananas comosus (L.) Merr.), cotton fibers (Gossypium herbaceum L.), kapok fibers (Ceiba pentandra (L.) Gaertn.), curauá fibers (Ananas erectifolius L.B. Sm.) and sisal fibers (Agave sisalana Perrine) related to their capacity of sorption of oil in case of accidental spill in the ocean. This work evaluates the substitution possibility of synthetic materials by natural biodegradable materials with less cost
Resumo:
With the objective to promote sustainable development, the fibres found in nature in abundance, which are biodegradable, of low cost in comparison to synthetic fibres are being used in the manufacture of composites. The mechanical behavior of the curauá and pineapple leaf fibre (PALF) composites in different proportions, 25% x 75% (P1), 50% x 50% (P2) e 75% x 25% (P3) were respectively studied, being initially treated with a 2% aqueous solution of sodium hydroxide. Mechanical analyses indicated that with respect to studies of traction, for the combination of P1 and P3, better results of 22.17 MPa and 16.98 MPa, were obtained respectively, which are higher than that of the combination P2. The results of the same pattern were obtained for analysis of bending resistance where P1 is 1.21% and P3 represents 0.96%. In the case of resistance to bending, best results were obtained for the combination P1 at 49.07 MPa. However, when Young's modulus values were calculated, the values were different to the pattern of the results of other tests, where the combination P2 with the value of 4.06 GPa is greater than the other combinations. This shows that the PALF had a greater influence in relation to curauá fibre. The analysis of the results generally shows that in combinations of two vegetable fibers of cellulosic origin, the fiber which shows higher percentage (75%) is the best option than to the composition of 50%/50%. In the meantime, according to the results obtained in this study, in the case where the application should withstand bending loads, the better composition would be 50%/50%
Resumo:
This research presents an approach to the addition of curauá fibers and licuri fibers in a polypropylene resin matrix, such as an alternative proposal to reinforce the polymeric composites. Fiber content of 0 %, 5 %, 10 %, and 20% were analyzed for verification of their mechanical properties comparing them, inclusive with the properties of polypropylene. The grainulated biocomposites had been prepared in an extrusora. The test bodies had been molded by injection and submitted to the mechanical essays uniaxial traction, flexion on three points, impact, in addition to thermal tests (HDT). These biocomposites had been also subjected the essay physicist-chemistry index of fluidity (IF). It was observed that the biocomposites of PP with 20% curauá, obtained bigger increase in the modulus of elasticity and a bigger reduction in the resistance to the impact. In the mechanical behavior, for all the biocomposites, these were increases in values of the limit of drainage and tension of rupture, when tested by uniaxial traction, as they added the fibers. Another important point was the increase of the resistance the flexion. It was also noted that the addition of fibers reduced the thermal degradation of the mixture natural fibers / polypropylene.
Resumo:
This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
Presents a composite formed by orthophthalic resin and fiber loading of carnauba straw. The fibers were first dried in direct sun exposure and subsequently ground into fodder for the reduction in size. Various formulations of the composite were preliminarily tested by choosing the one presenting the best processability in applying the mold. The composite produced is used for the manufacture of a parabolic surface subsequently coated with mirror segments, flexible plastic, for reflecting the solar rays incident on it. The reflective parable represents the main element of the solar cooker that works with the concentration of sunlight and has dimensions of 1.14 m in diameter and area of 1.0 m². Manufacturing processes and assembly of solar cooker concentration produced are presented. The results of tests for cooking and baking various foods, including rice, pasta, beans, cake, cassava, shrimp, beef, breaded demonstrating the competitiveness of solar cooker studied with other stoves already manufactured and tested in Brazil are presented and in the world. It was also demonstrated the feasibility of the proposed composite for Prototypes manufacture of solar and other structures that do not require great efforts resistance
Resumo:
A field experiment was conducted in Sapezal, Mato Grosso state, Brazil, in 2007/2008, with the purpose of determining the effect of potassium sources on yield components, yield, fiber quality and economical aspects of cotton (Gossypium hirsutum L.). A randomized complete block experimental design was used, with five replications. The treatments consisted of application in covering, via soil, at rate of 100 kg ha(-1) of K(2)O, in two split applications, of the sources KCl, K(2)SO(4), KNO(3) and K(2)SO(4).2MgSO(4). The number of nodes, height, number of bolls in the superior third and the weight of boll in the medium third was higher with K(2)SO(4).2MgSO(4) than with KNO(3) source. The potassium fertilizers did not influence the fiber revenue, but the fertilizing with K(2)SO(4).2MgSO(4) source had higher cotton seed yield and lint yield, although the uniformity ratio of fibber and profitability were smaller in relation to K(2)SO(4). The fibber agio index was higher with KNO(3) source. The production cost was higher with K(2)SO(4).2MgSO(4) source and in function of the smallest production cost, KCl source presented superior liquid revenue than other treatments.
Resumo:
The increasing demand for natural dyes in place of synthetic ones is justified by the non-toxicity or low toxicity of the former. The synthetic dyes are associated with diseases like cancer as well as when released in the environment takes longer to degrade and the intermediates could be still more toxic. The Annatto (Bixa Orellana L.) is a carotenoid and one of the more important natural dyes used in the food industry. In the form of dye, it represents nearly 70% of the world natural dye production and 90% in Brazil. In the present work, annatto seeds were used of the species peruana paulista, which had nearly 2.1% of bixin. The process of dye extraction with ethyl alcohol showed 4% of dye in the form of powder with particle diameter of 28mm. The extraction process did not alter the chemical composition of the dye, which was confirmed by the electronic spectrum of absorption. Dyeings were carried out with different mordents to study the total colour difference as well as the wash fastness properties and friction fastness properties under wet and dry conditions. The samples treated with copper sulphate showed colour difference but at the same time showed better fastness results. The samples treated with resin (no formaldehyde) did not alter the colour significantly still better the fastness properties. From the results, it could be stated that the resin could be an alternative for heavy metallic mordents
Resumo:
Este artigo avalia os resultados do processo de reestruturação da indústria brasileira de máquinas têxteis, originado pelas reformas econômicas liberalizantes iniciadas no final dos anos 1980 e início dos 1990 e pelas medidas macroeconômicas que deram sustentação ao Plano Real, a partir de julho de 1994. Inicialmente, fazemos uma avaliação teórica das fontes do conhecimento e das formas de capacitação tecnológica nessa indústria. A seguir, expomos brevemente as principais características da indústria de máquinas têxteis em âmbito global. Posteriormente, direcionando a discussão para o caso brasileiro, apresentamos as especificidades da indústria têxtil, usuária daqueles bens, e do próprio setor de máquinas nacional. Através dos fluxos de comércio exterior do Brasil entre 1990 e 2004 e da variação do valor médio (US$ FOB/KG) desses fluxos, o artigo examina as mudanças estruturais, tecnológicas e, por conseguinte, na competitividade, que culminaram na transformação da indústria brasileira de máquinas têxteis, em termos de dimensão (escala) e escopo, e em uma nova inserção internacional, agora mais especializada e subordinada.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)