962 resultados para Fault tolerance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ordinary desktop computers continue to obtain ever more resources – in-creased processing power, memory, network speed and bandwidth – yet these resources spend much of their time underutilised. Cycle stealing frameworks harness these resources so they can be used for high-performance computing. Traditionally cycle stealing systems have used client-server based architectures which place significant limits on their ability to scale and the range of applica-tions they can support. By applying a fully decentralised network model to cycle stealing the limits of centralised models can be overcome. Using decentralised networks in this manner presents some difficulties which have not been encountered in their previous uses. Generally decentralised ap-plications do not require any significant fault tolerance guarantees. High-performance computing on the other hand requires very stringent guarantees to ensure correct results are obtained. Unfortunately mechanisms developed for traditional high-performance computing cannot be simply translated because of their reliance on a reliable storage mechanism. In the highly dynamic world of P2P computing this reliable storage is not available. As part of this research a fault tolerance system has been created which provides considerable reliability without the need for a persistent storage. As well as increased scalability, fully decentralised networks offer the ability for volunteers to communicate directly. This ability provides the possibility of supporting applications whose tasks require direct, message passing style communication. Previous cycle stealing systems have only supported embarrassingly parallel applications and applications with limited forms of communication so a new programming model has been developed which can support this style of communication within a cycle stealing context. In this thesis I present a fully decentralised cycle stealing framework. The framework addresses the problems of providing a reliable fault tolerance sys-tem and supporting direct communication between parallel tasks. The thesis includes a programming model for developing cycle stealing applications with direct inter-process communication and methods for optimising object locality on decentralised networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents on overview of the issues in precisely defining, specifying and evaluating the dependability of software, particularly in the context of computer controlled process systems. Dependability is intended to be a generic term embodying various quality factors and is useful for both software and hardware. While the developments in quality assurance and reliability theories have proceeded mostly in independent directions for hardware and software systems, we present here the case for developing a unified framework of dependability—a facet of operational effectiveness of modern technological systems, and develop a hierarchical systems model helpful in clarifying this view. In the second half of the paper, we survey the models and methods available for measuring and improving software reliability. The nature of software “bugs”, the failure history of the software system in the various phases of its lifecycle, the reliability growth in the development phase, estimation of the number of errors remaining in the operational phase, and the complexity of the debugging process have all been considered to varying degrees of detail. We also discuss the notion of software fault-tolerance, methods of achieving the same, and the status of other measures of software dependability such as maintainability, availability and safety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is aimed at reviewing the notion of Byzantine-resilient distributed computing systems, the relevant protocols and their possible applications as reported in the literature. The three agreement problems, namely, the consensus problem, the interactive consistency problem, and the generals problem have been discussed. Various agreement protocols for the Byzantine generals problem have been summarized in terms of their performance and level of fault-tolerance. The three classes of Byzantine agreement protocols discussed are the deterministic, randomized, and approximate agreement protocols. Finally, application of the Byzantine agreement protocols to clock synchronization is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our main result is a new sequential method for the design of decentralized control systems. Controller synthesis is conducted on a loop-by-loop basis, and at each step the designer obtains an explicit characterization of the class C of all compensators for the loop being closed that results in closed-loop system poles being in a specified closed region D of the s-plane, instead of merely stabilizing the closed-loop system. Since one of the primary goals of control system design is to satisfy basic performance requirements that are often directly related to closed-loop pole location (bandwidth, percentage overshoot, rise time, settling time), this approach immediately allows the designer to focus on other concerns such as robustness and sensitivity. By considering only compensators from class C and seeking the optimum member of that set with respect to sensitivity or robustness, the designer has a clearly-defined limited optimization problem to solve without concern for loss of performance. A solution to the decentralized tracking problem is also provided. This design approach has the attractive features of expandability, the use of only 'local models' for controller synthesis, and fault tolerance with respect to certain types of failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) have recently drawn significant research attention since they offer unique benefits and versatility with respect to bandwidth spatial reuse, intrinsic fault tolerance, and low-cost rapid deployment. This paper addresses the issue of delay sensitive realtime data transport in these type of networks. An effective QoS mechanism is thereby required for the speedy transport of the realtime data. QoS issue in MANET is an open-end problem. Various QoS measures are incorporated in the upperlayers of the network, but a few techniques addresses QoS techniques in the MAC layer. There are quite a few QoS techniques in the MAC layer for the infrastructure based wireless network. The goal and the challenge is to achieve a QoS delivery and a priority access to the real time traffic in adhoc wireless environment, while maintaining democracy in the resource allocation. We propose a MAC layer protocol called "FCP based FAMA protocol", which allocates the channel resources to the needy in a more democratic way, by examining the requirements, malicious behavior and genuineness of the request. We have simulated both the FAMA as well as FCP based FAMA and tested in various MANET conditions. Simulated results have clearly shown a performance improvement in the channel utilization and a decrease in the delay parameters in the later case. Our new protocol outperforms the other QoS aware MAC layer protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper, we describe a power-efficient architecture for redundant execution on chip multiprocessors (CMPs) which when coupled with our per-core dynamic voltage and frequency scaling (DVFS) algorithm significantly reduces the energy overhead of redundant execution without sacrificing performance. Our evaluation shows that this architecture has a performance overhead of only 0.3% and consumes only 1.48 times the energy of a non-fault-tolerant baseline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dead-time is introduced between the gating signals to the top and bottom switches in a voltage source inverter (VSI) leg, to prevent shoot through fault due to the finite turn-off times of IGBTs. The dead-time results in a delay when the incoming device is an IGBT, resulting in error voltage pulses in the inverter output voltage. This paper presents the design, fabrication and testing of an advanced gate driver, which eliminates dead-time and consequent output distortion. Here, the gating pulses are generated such that the incoming IGBT transition is not delayed and shoot-through is also prevented. The various logic units of the driver card and fault tolerance of the driver are verified through extensive tests on different topologies such as chopper, half-bridge and full-bridge inverter, and also at different conditions of load. Experimental results demonstrate the improvement in the load current waveform quality with the proposed circuit, on account of elimination of dead-time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed system has quite a lot of servers to attain increased availability of service and for fault tolerance. Balancing the load among these servers is an important task to achieve better performance. There are various hardware and software based load balancing solutions available. However there is always an overhead on Servers and the Load Balancer while communicating with each other and sharing their availability and the current load status information. Load balancer is always busy in listening to clients' request and redirecting them. It also needs to collect the servers' availability status frequently, to keep itself up-to-date. Servers are busy in not only providing service to clients but also sharing their current load information with load balancing algorithms. In this paper we have proposed and discussed the concept and system model for software based load balancer along with Availability-Checker and Load Reporters (LB-ACLRs) which reduces the overhead on server and the load balancer. We have also described the architectural components with their roles and responsibilities. We have presented a detailed analysis to show how our proposed Availability Checker significantly increases the performance of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security.

At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level.

In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations.

In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction.

In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

139 p.