975 resultados para Fast dynamics
Resumo:
This paper studies the dynamical response of a rotary drilling system with a drag bit, using a lumped parameter model that takes into consideration the axial and torsional vibration modes of the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface, the cutting process introduces a state-dependent delay, while the frictional process is responsible for discontinuous right-hand sides in the equations governing the motion of the bit. This complex system is characterized by a fast axial dynamics compared to the slow torsional dynamics. A dimensionless formulation exhibits a large parameter in the axial equation, enabling a two-time-scales analysis that uses a combination of averaging methods and a singular perturbation approach. An approximate model of the decoupled axial dynamics permits us to derive a pseudoanalytical expression of the solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by generating an apparent velocity weakening friction law that has been proposed empirically in earlier work. The analytical expression of the solution of the axial dynamics is used to derive an approximate analytical expression of the velocity weakening friction law related to the physical parameters of the system. This expression can be used to provide recommendations on the operating parameters and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in torsional models used for control. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
We investigated the dynamics of spontaneous emission from a photonic crystal etched into a SiN slab. After fitting the decay curves of the emission to double exponential functions, we divided the dynamic process of the spontaneous emission into a fast process and a slow process. It was observed that the presence of the photonic crystal increased the proportion of the fast decay component, and consequently, the emission rate and time-integrated emission intensity were also enhanced. These enhancements were a result of the coupling of the guide modes to the leaky modes of the photonic crystal slab waveguide. (C) 2008 Optical Society of America.
Resumo:
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/,tau)13], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent beta on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Photodissociation dynamics of the CH3 radical at 212.5 nm has been investigated using the H atom Rydberg tagging time-of-flight method with a pure CH3 radical source generated by the photolysis of CH3I at 266 nm. Time-of-flight spectra of the H atom products from the photolysis of both cold and hot methyl radicals have been measured at different photolysis polarizations. Experimental results indicate that the photodissociation of the methyl radical in its ground vibrational state at 212.5 nm excitation occurs on a very fast time scale in comparison with its rotational period, indicating the CH3 dissociation at 212.5 nm occurs on the excited 3s Rydberg state surface. Experimental evidence also shows that the photodissociation of the methyl radical in the nu(2)=1 state of the umbrella mode at 212.5 nm excitation is characteristically different from that in the ground vibrational state. (C) 2004 American Institute of Physics.
Resumo:
Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.
Resumo:
Van den Berg, A. W. C., Flikkema, E., Lems, S., Bromley, S. T., Jansen, J. C. (2006). Molecular dynamics-based approach to study the anisotropic self-diffusion of molecules in porous materials with multiple cage types: Application to H-2 in losod. Journal of physical chemistry b, 110 (1), 501-506. RAE2008
Resumo:
A mathematical model to simulate the population dynamics and productivity of macroalgae is described. The model calculates the biomass variation of a population divided into size-classes. Biomass variation in each class is estimated from the mass balance of carbon fixation, carbon release and demographic processes such as mortality and frond breakage. The transitions between the different classes are calculated in biomass and density units as a function of algal growth. Growth is computed from biomass variations using an allometric relationship between weight and length. Gross and net primary productivity is calculated from biomass production and losses over the period of simulation. The model allows the simulation of different harvesting strategies of commercially important species. The cutting size and harvesting period may be changed in order to optimise the calculated yields. The model was used with the agarophyte Gelidium sesquipedale (Clem.) Born. et Thur. This species was chosen because of its economic importance as a the main raw material for the agar industry. Net primary productivity calculated with it and from biomass variations over a yearly period, gave similar results. The results obtained suggest that biomass dynamics and productivity are more sensitive to the light extinction coefficient than to the initial biomass conditions for the model. Model results also suggest that biomass losses due to respiration and exudation are comparable to those resulting from mortality and frond breakage. During winter, a significant part of the simulated population has a negative net productivity. The importance of considering different parameters in the productivity light relationships in order to account for their seasonal variability is demonstrated with the model results. The model was implemented following an object oriented programming approach. The programming methodology allows a fast adaptation of the model to other species without major software development.
Resumo:
The confinement of fast particles, present in a tokamak plasma as nuclear fusion products and through external heating, will be essential for any future fusion reactor. Fast particles can be expelled from the plasma through their interaction with Alfvén eigenmode (AE) instabilities. AEs can exist in gaps in the Alfvén continuum created by plasma equilibrium non-uniformities. In the ASDEX Upgrade tokamak, low-frequency modes in the frequency range from f ≈ 10 − 90kHz, including beta-induced Alfvén eigenmodes (BAEs) and lower frequency modes with mixed Alfvén and acoustic polarisations, have been observed. These exist in gaps in the Alfvén continuum opened up by geodesic curvature and finite plasma compressibility. In this thesis, a kinetic dispersion relation is solved numerically to investigate the influence of thermal plasma profiles on the evolution of these low-frequency modes during the sawtooth cycle. Using information gained from various experimental sources to constrain the equilibrium reconstructions, realistic safety factor profiles are obtained for the analysis using the CLISTE code. The results for the continuum accumulation point evolution are then compared with experimental results from ASDEX Upgrade during periods of ICRH only as well as for periods with both ICRH and ECRH applied simultaneously. It is found that the diamagnetic frequency plays an important role in influencing the dynamics of BAEs and low-frequency acoustic Alfvén eigenmodes, primarily through the presence of gradients in the thermal plasma profiles. Different types of modes that are observed during discharges heated almost exclusively by ECRH were also investigated. These include electron internal transport barrier (eITB) driven modes, which are observed to coincide with the occurrence of an eITB in the plasma during the low-density phase of the discharge. Also observed are BAE-like modes and edge-TAEs, both of which occur during the H-mode phase of the discharge.
Resumo:
The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.
Resumo:
We report on the observation of fast hydrogen atoms in a capacitively coupled RF reactor by optical emission spectroscopy. For the analysis we use the prominent H-alpha emission line of atomic hydrogen in combination with other lines from molecular hydrogen and argon. Several chaxacteristic emission structures can be identified. One of these structures is related to fast hydrogen atoms traveling from the surface of the powered electrode to the plasma bulk. From the appearance time within the RF period we conclude that this feature originates from ion bombardment of the electrode surface. Measured pressure dependencies and a simple model for the ion dynamics support this assumption.
Resumo:
The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30 mu m, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e. g., in proton-driven fast ignition.
Resumo:
We present a comprehensive numerical study of the dynamics of an intense laser pulse as it propagates through an underdense plasma in two and three dimensions. By varying the background plasma density and the polarization of the laser beam, significant differences are found in terms of energy transport and dissipation, in agreement with recently reported experimental results. Below the threshold for relativistic self-focusing, the plasma and laser dynamics are observed to be substantially insensitive to the initial laser polarization, since laser transport is dominated by ponderomotive effects. Above this threshold, relativistic effects become important, and laser energy is dissipated either by plasma heating (p-polarization) or by trapping of electromagnetic energy into plasma cavities (s-polarization) or by a combination of both (circular polarization). Besides the fundamental interest of this study, the results presented are relevant to applications such as plasma-based accelerators, x-ray lasers, and fast-ignition inertial confinement fusion. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737151]
Resumo:
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
Resumo:
Fast-electron generation and dynamics, including electron refluxing, is at the core of understanding high-intensity laser-plasma interactions. This field is itself of strong relevance to fast ignition fusion and the development of new short-pulse, intense, x-ray, gamma-ray, and particle sources. In this paper, we describe experiments that explicitly link fast-electron refluxing and anisotropy in hard-x-ray emission. We find the anisotropy in x-ray emission to be strongly correlated to the suppression of refluxing. In contrast to some previous work, the peak of emission is directly along the rear normal to the target rather than along either the incident laser direction or the specular reflection direction.