866 resultados para Falling sinker viscometer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past decade of declining FDI barriers, small domestic firms disproportionately contracted while large multinational firms experienced a substantial growth in Japan’s manufacturing sector. This paper quantitatively assesses the impact of FDI globalization on intra-industry reallocations and aggregate productivity. We calibrate the firm-heterogeneity model of Eaton, Kortum, and Kramarz (2011) to micro-level data on Japanese multinational firms. Estimating the structural parameters of the model, we demonstrate that the model can strongly replicate the entry and sales patterns of Japanese multinationals. Counterfactual simulations show that declining FDI barriers lead to a disproportionate expansion of foreign production by more efficient firms relative to less efficient firms. A hypothetical 20% reduction in FDI barriers is found to generate a 30.7% improvement in aggregate productivity through market-share reallocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pararotor is a decelerator device based on the autorotation of a rotating wing. When it is dropped, it generates an aerodynamic force parallel to the main motion direction, acting as a decelerating force. In this paper, the rotational motion equations are shown for the vertical flight without any lateral wind component and some simplifying assumptions are introduced to obtain analytic solutions of the motion. First, the equilibrium state is obtained as a function of the main parameters. Then the equilibrium stability is analyzed. The motion stability depends on two nondimensional parameters, which contain geometric, inertia, and aerodynamic characteristics of the device. Based on these two parameters a stability diagram can be defined. Some stability regions with different types of stability trajectories (nodes, spirals, focuses) can be identified for spinning motion around axes close to the major, minor, and intermediate principal axes. It is found that the blades contribute to stability in a case of spin around the intermediate principal inertia axis, which is otherwise unstable. Subsequently, the equations for determining the angles of nutation and spin of the body are obtained, thus defining the orientation of the body for a stationary motion and the parameters on which that position depends.