989 resultados para Failure (mechanical)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by similar to 38 and similar to 20%, respectively, vis-A -vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10mm in diameter and 20mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinyl butyral) - MMT clay nanocomposites were synthesized in situ with three different degrees of acetalization and with varying clay content for each vinyl butyral polymer ratio. The clay nano-platelet galleries were expanded, as determined by X-ray diffraction and TEM analysis. The glass transition temperature of the polymer nanocomposites were found to be similar to 56 degrees C and similar to 52 degrees C for the neat polymer and the 4% clay loaded samples, respectively. The 4 wt% clay loaded film showed higher strength and low strain to failure. The dynamic mechanical analysis also confirmed the improved stability of the matrix. The matrix with 0.5 butyral to alcohol ratio for 4 wt% clay exhibited good water vapor transmission compared to all other compositions. The encapsulated devices with 2.5 and 4 wt% clay loaded films increases the device life time and the efficiencies of these films were 50% higher than their encapsulated pristine polymer films. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we integrate two or more compliant mechanisms to get enhanced functionality for manipulating and mechanically characterizing the grasped objects of varied size (cm to sub-mm), stiffness (1e5 to 10 N/m), and materials (cement to biological cells). The concepts of spring-lever (SL) model, stiffness maps, and non-dimensional kinetoelastostatic maps are used to design composite and multi-scale compliant mechanisms. Composite compliant mechanisms comprise two or more different mechanisms within a single elastic continuum while multi-scale ones possess the additional feature of substantial difference in the sizes of the mechanisms that are combined into one. We present three applications: (i) a composite compliant device to measure the failure load of the cement samples; (ii) a composite multi-scale compliant gripper to measure the bulk stiffness of zebrafish embryos; and (iii) a compliant gripper combined with a negative-stiffness element to reduce the overall stiffness. The prototypes of all three devices are made and tested. The cement sample needed a breaking force of 22.5 N; the zebrafish embryo is found to have bulk stiffness of about 10 N/m; and the stiffness of a compliant gripper was reduced by 99.8 % to 0.2 N/m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the design of radio frequency micro-electro-mechanical systems (RF MEMS) switches, the reliability issue becomes increasingly important. This paper represents some failure phenomena of doubly supported capacitive RF MEMS switches that include observable destruction failure and directly measurable parameter degradation obtained from the actuating-voltage testing and scanning electron microscope (SEM) observation. The relevant failure modes as well as their failure mechanisms are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at different scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental difficulties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling problems in mechanics, that is, turbulence in fluids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium statistical theory may be an effective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical theory are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly developed numerical code, MFPA(2D) (Material Failure Process Analysis), is applied to study the influence of stochastic mesoscopic structure on macroscopic mechanical behavior of rock-like materials. A set of uniaxial compression tests has been numerically studied with numerical specimens containing pre-existing crack-like flaw. The numerical results reveal the influence of random mesoscopic structure on failure process of brittle material, which indicates that the variation of failure mode is strongly sensitive to the local disorder feature of the specimen. And the patterns of the crack evolution in the specimens are very different from each other due to the random mesoscopic structure in material. The results give a good explanation for various kinds of fracture modes and peak strength variation observed in laboratory studies with specimens made from the same rock block being statistically homogenous in macro scale. In addition, the evolution of crack is more complicated in heterogeneous cases than in homogeneous cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer bonded explosives (PBXs) are highly particle filled composite materials comprised of explosive crystals and a polymeric binder (ca. 5-10% by weight). The microstructure and mechanical properties of two pressed PBXs with different binder systems were studied in this paper. The initial microstructure of the pressed PBXs and its evolution under different mechanical aggressions were studied, including quasi-static tension and compression, ultrasonic wave stressing and long-pulse low-velocity impact. Real-time microscopic observation of the PBXs under tension was conducted by using a scanning electron microscope equipped with a loading stage. The mechanical properties under tensile creep, quasi-static tension and compression were studied. The Brazilian test, or diametrical compression, was used to study the tensile properties. The influences of pressing pressures and temperatures, and strain rates on the mechanical properties of PBXs were analyzed. The mesoscale damage modes in initial pressed samples and the samples insulted by different mechanical aggressions, and the corresponding failure mechanisms of the PBXs under different loading conditions were analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress fields and failure mechanisms have been investigated in composites with particles either surface treated or untreated under uniaxial tension. Previous experimental observation of failure mechanisms in a composite with untreated particles showed that tensile cracks occurred mostly at the polar region of the particle and grew into interfacial debonding. In a composite with surface-treated particles, however, shear yielding and shear cracking proceeded along the interphase-matrix interface at the polar area of the matrix and thus may improve the mechanical behaviour of the material. The finite element calculations showed that octahedral shear stress at the polar and longitudinal areas of the particle treated by coupling agents is much larger than that of materials with untreated particles, and the shear stress distribution around the interface is sensitive to the interphase property. The results suggest that a th ree-phase model can describe the composites with surface-treated fillers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic survey of the available data such as elastic constants, density, molar mass, and glass transition temperature of 45 metallic glasses is conducted. It is found that a critical strain controlling the onset of plastic deformation is material-independent. However, the correlation between elastic constants of solid glass and vitrification characteristics of its liquid does not follow a simple linear relation, and a characteristic volume, viz. molar volume, maybe relating to the characteristic size of a shear transformation zone (STZ), should be involved.