942 resultados para Factorization of matrices
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
Relatório de Estágio
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
Models of codon evolution have attracted particular interest because of their unique capabilities to detect selection forces and their high fit when applied to sequence evolution. We described here a novel approach for modeling codon evolution, which is based on Kronecker product of matrices. The 61 × 61 codon substitution rate matrix is created using Kronecker product of three 4 × 4 nucleotide substitution matrices, the equilibrium frequency of codons, and the selection rate parameter. The entities of the nucleotide substitution matrices and selection rate are considered as parameters of the model, which are optimized by maximum likelihood. Our fully mechanistic model allows the instantaneous substitution matrix between codons to be fully estimated with only 19 parameters instead of 3,721, by using the biological interdependence existing between positions within codons. We illustrate the properties of our models using computer simulations and assessed its relevance by comparing the AICc measures of our model and other models of codon evolution on simulations and a large range of empirical data sets. We show that our model fits most biological data better compared with the current codon models. Furthermore, the parameters in our model can be interpreted in a similar way as the exchangeability rates found in empirical codon models.
Resumo:
Koneet voidaan usein jakaa osajärjestelmiin, joita ovat ohjaus- ja säätöjärjestelmät, voimaa tuottavat toimilaitteet ja voiman välittävät mekanismit. Eri osajärjestelmiä on simuloitu tietokoneavusteisesti jo usean vuosikymmenen ajan. Osajärjestelmien yhdistäminen on kuitenkin uudempi ilmiö. Usein esimerkiksi mekanismien mallinnuksessa toimilaitteen tuottama voimaon kuvattu vakiona, tai ajan funktiona muuttuvana voimana. Vastaavasti toimilaitteiden analysoinnissa mekanismin toimilaitteeseen välittämä kuormitus on kuvattu vakiovoimana, tai ajan funktiona työkiertoa kuvaavana kuormituksena. Kun osajärjestelmät on erotettu toisistaan, on niiden välistenvuorovaikutuksien tarkastelu erittäin epätarkkaa. Samoin osajärjestelmän vaikutuksen huomioiminen koko järjestelmän käyttäytymissä on hankalaa. Mekanismien dynamiikan mallinnukseen on kehitetty erityisesti tietokoneille soveltuvia numeerisia mallinnusmenetelmiä. Useimmat menetelmistä perustuvat Lagrangen menetelmään, joka mahdollistaa vapaasti valittaviin koordinaattimuuttujiin perustuvan mallinnuksen. Numeerista ratkaisun mahdollistamiseksi menetelmän avulla muodostettua differentiaali-algebraaliyhtälöryhmää joudutaan muokkaamaan esim. derivoimalla rajoiteyhtälöitä kahteen kertaan. Menetelmän alkuperäisessä numeerisissa ratkaisuissa kaikki mekanismia kuvaavat yleistetyt koordinaatit integroidaan jokaisella aika-askeleella. Tästä perusmenetelmästä johdetuissa menetelmissä riippumattomat yleistetyt koordinaatit joko integroidaan ja riippuvat koordinaatit ratkaistaan rajoiteyhtälöiden perusteella tai yhtälöryhmän kokoa pienennetään esim. käyttämällä nopeus- ja kiihtyvyysanalyyseissä eri kiertymäkoordinaatteja kuin asema-analyysissä. Useimmat integrointimenetelmät on alun perin tarkoitettu differentiaaliyhtälöiden (ODE) ratkaisuunjolloin yhtälöryhmään liitetyt niveliä kuvaavat algebraaliset rajoiteyhtälöt saattavat aiheuttaa ongelmia. Nivelrajoitteiden virheiden korjaus, stabilointi, on erittäin tärkeää mekanismien dynamiikan simuloinnin onnistumisen ja tulosten oikeellisuuden kannalta. Mallinnusmenetelmien johtamisessa käytetyn virtuaalisen työn periaatteen oletuksena nimittäin on, etteivät rajoitevoimat tee työtä, eli rajoitteiden vastaista siirtymää ei tapahdu. Varsinkaan monimutkaisten järjestelmien pidemmissä analyyseissä nivelrajoitteet eivät toteudu tarkasti. Tällöin järjestelmän energiatasapainoei toteudu ja järjestelmään muodostuu virtuaalista energiaa, joka rikkoo virtuaalisen työn periaatetta, Tästä syystä tulokset eivät enää pidäpaikkaansa. Tässä raportissa tarkastellaan erityyppisiä mallinnus- ja ratkaisumenetelmiä, ja vertaillaan niiden toimivuutta yksinkertaisten mekanismien numeerisessa ratkaisussa. Menetelmien toimivuutta tarkastellaan ratkaisun tehokkuuden, nivelrajoitteiden toteutumisen ja energiatasapainon säilymisen kannalta.
Resumo:
[spa] En el contexto de los juegos de asignación bilaterales, estudiamos el conjunto de matrices asociadas a mercados de asignación con el mismo nucleo. Se proporcionan condiciones sobre las entradas de la matriz que aseguran que los juegos de asignación asociados tienen el mismo núcleo. Se prueba que este conjunto de matrices que dan lugar al mismo núcleo forman un semirretículo con un número finito de elementos minimales y un único máximo. Se da una caracterización de estos elementos minimales. También se proporciona una condición suficiente para obtener un retículo.
Resumo:
[spa] En el contexto de los juegos de asignación bilaterales, estudiamos el conjunto de matrices asociadas a mercados de asignación con el mismo nucleo. Se proporcionan condiciones sobre las entradas de la matriz que aseguran que los juegos de asignación asociados tienen el mismo núcleo. Se prueba que este conjunto de matrices que dan lugar al mismo núcleo forman un semirretículo con un número finito de elementos minimales y un único máximo. Se da una caracterización de estos elementos minimales. También se proporciona una condición suficiente para obtener un retículo.
Resumo:
Colonization in the State of Paraná has culminated in the devastation of large forest areas in the entire State. Degraded area recovery programs have emphasized the utilization of native species, but often the species indicated for local reforestation areas are unknown, as those areas are little known floristically. This study aimed to survey native species indicated for reforestation of areas in the Western region of the State of Paraná, classify those species as pioneer, secondary, or climactic, and indicate places of occurrence of matrices where seeds of those species could be collected. Bibliographic surveys in the specialized literature and research in the Herbarium Museu Botânico Municipal de Curitiba (MBM) and Herbarium of Universidade Estadual do Oeste do Paraná (UNOP) were conducted to identify potential species for degraded area recovery in the study of Western region of Paraná. In all, 115 species were selected, of which 22 are pioneer, 73 are secondary, and 20 are climactic. The bibliographic surveys suggests that pioneer species are the most indicated for the initial processes in the degraded areas recovery, while secondary and climactic species play a major role in area enrichment.
Resumo:
Given a heterogeneous relation algebra R, it is well known that the algebra of matrices with coefficient from R is relation algebra with relational sums that is not necessarily finite. When a relational product exists or the point axiom is given, we can represent the relation algebra by concrete binary relations between sets, which means the algebra may be seen as an algebra of Boolean matrices. However, it is not possible to represent every relation algebra. It is well known that the smallest relation algebra that is not representable has only 16 elements. Such an algebra can not be put in a Boolean matrix form.[15] In [15, 16] it was shown that every relation algebra R with relational sums and sub-objects is equivalent to an algebra of matrices over a suitable basis. This basis is given by the integral objects of R, and is, compared to R, much smaller. Aim of my thesis is to develop a system called ReAlM - Relation Algebra Manipulator - that is capable of visualizing computations in arbitrary relation algebras using the matrix approach.
Resumo:
Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.
Resumo:
Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package Maple®.
Resumo:
We have favoured the variational (secular equation) method for the determination of the (ro-) vibrational energy levels of polyatomic molecules. We use predominantly the Watson Hamiltonian in normal coordinates and an associated given potential in the variational code 'Multimode'. The dominant cost is the construction and diagonalization of matrices of ever-increasing size. Here we address this problem, using pertubation theory to select dominant expansion terms within the Davidson-Liu iterative diagonalization method. Our chosen example is the twelve-mode molecule methanol, for which we have an ab initio representation of the potential which includes the internal rotational motion of the OH group relative to CH3. Our new algorithm allows us to obtain converged energy levels for matrices of dimensions in excess of 100 000.
Resumo:
This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic.
Resumo:
Esta Dissertação apresenta, discute e analisa a utilização do método de planejamento da qualidade denominado QFD - Quality Function Deployment aplicado ao segmento de prestação de serviços constituído por clubes sociais e esportivos. O QFD trabalha com um conjunto de matrizes e tem como ponto de partida uma pesquisa de mercado com os clientes alvo da empresa. A seqüência das matrizes propicia a garantia de que as informações serão transportadas por todas as etapas de desenvolvimento do planejamento da qualidade. As matrizes do QFD são elaboradas com o auxílio de uma equipe multidisciplinar, permitindo, portanto, o trabalho em equipe e o intercâmbio de conhecimentos. O objetivo da aplicação do QFD é a produção, ao final, de um Plano de Melhorias.O Plano de Melhorias é composto por um conjunto de matrizes adaptadas ao setor em estudo (clubes sociais e esportivos). Isso representa uma contribuição original à literatura do desdobramento da qualidade. O trabalho é composto por uma revisão bibliográfica, envolvendo a qualidade em serviços, o QFD, trabalho em equipe e compartilhamento do conhecimento, apresentando-se posteriormente o estudo de caso no Petrópole Tênis Clube. A metodologia proposta visa a contribuir para a fidelização dos sócios do Clube em enfoque, já que o mesmo demonstra um cenário onde seus sócios vêm se afastando gradativamente implicando, com isso, dificuldades de oferecer aos mesmos um ambiente com manutenção permanente,novos atrativos e capacitação da equipe que serve à entidade.
Resumo:
O presente trabalho introduz o estabelecimento de um modelo para garantia da qualidade, particularmente aplicado ao segmento de prestação de serviços por bibliotecas. O estudo a ser apresentado baseia-se na utilização de um método de planejamento em específico, o Desdobramento da Função Qualidade (QFD), selecionada para viabilizar a análise da qualidade demandada pelo cliente, das características de qualidade críticas, dos serviços críticos e dos recursos críticos. Este trabalho discute o sistema de garantia da qualidade, cuja implantação está em curso, e que é parte integrante do modelo de gestão a ser adotado pela Biblioteca da Escola de Engenharia da Universidade Federal do Rio Grande do Sul. A análise a ser apresentada utiliza o QFD incorporando um conjunto de matrizes que facilita e garante o fluxo de informações através de todas as suas etapas de desenvolvimento.