964 resultados para Factor Xa-like Protease
Gene expression during early ascidian metamorphosis requires signaling by Hemps, an EGF-like protein
Resumo:
Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.
Resumo:
BACKGROUND: Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. METHODS: In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. RESULTS: WF decreased the viability of C2C12 myotubes, especially at concentrations of 20-25 mug.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. CONCLUSION: These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model. © 2008 Yano et al; licensee BioMed Central Ltd.
Resumo:
The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.
Resumo:
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) < 1.00), and LPS removal into the micelle-rich phase (%REM(LPS) > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1644-1653, 2010
Resumo:
The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24 h elicited a marked increase in mRNA expression for IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway.. although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
Resumo:
The Wnt signaling pathways play a key role in cell renewal, and there are two such pathways. In patients with rheumatoid arthritis (RA), the synovial membrane expresses genes such as Wnt and Fz at higher levels than those observed in patients without RA. The Wnt proteins are glycoproteins that bind to receptors of the Fz family on the cell surface. The Wnt/Fz complex controls tissue formation during embryogenesis, as well as throughout the process of limb development and joint formation. Recent studies have suggested that this signaling pathway plays a role in the pathophysiology of RA. Greater knowledge of the role of the Writ signaling pathway in RA could improve understanding of the differences in RA clinical presentation and prognosis. Further studies should also focus on Wnt family members as molecular targets in the treatment of RA. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The intracellular mechanisms that determine the response of neural progenitor cells to growth factors and regulate their differentiation into either neurons or astrocytes remain unclear. We found that expression of SOCS2, an intracellular regulator of cytokine signaling, was restricted to mouse progenitor cells and neurons in response to leukemia inhibitory factor (LIF)-like cytokines. Progenitors lacking SOCS2 produced fewer neurons and more astrocytes in vitro, and Socs2(-/-) mice had fewer neurons and neurogenin-1 (Ngn1)-expressing cells in the developing cortex, whereas overexpression of SOCS2 increased neuronal differentiation. We also report that growth hormone inhibited Ngn1 expression and neuronal production, and this action was blocked by SOCS2 overexpression. These findings indicate that SOCS2 promotes neuronal differentiation by blocking growth hormone-mediated downregulation of Ngn1.
Resumo:
Streptococcus pyogenes (group A streptococcus) strains may express several distinct fibronectin-binding proteins (FBPs) which are considered as major streptococcal adhesins. Of the FBPs, SfbI was shown in vitro to promote internalization of the bacterium into host cells and has been implicated in persistence. In the tropical Northern Territory, where group A streptococcal infection is common, multiple genotypes of the organism were found among isolates from invasive disease cases and no dominant strains were observed. To determine whether any FBPs is associated with invasive disease propensity of S. pyogenes, we have screened streptococcal isolates from bacteraemic and necrotizing fasciitis patients and isolates from uncomplicated infections for genetic endowment of 4 FBPs. No difference was observed in the distribution of sfbII, fbp54 and sfbI between the blood isolates' and isolates from uncomplicated infection. We conclude that the presence of sfbI does not appear to promote invasive diseases, despite its association with persistence. We also show a higher proportion of group A streptococcus strains isolated from invasive disease cases possess prtFII when compared to strains isolated from non-invasive disease cases. We suggest that S. pyogenes may recruit different FBPs for different purposes.
Resumo:
Mestrado em Engenharia Informática
Resumo:
A terapêutica anticoagulante oral está em mudança. A varfarina e o acenocumarol constituem ainda o padrão anticoagulante oral em muitos contextos clínicos. Mas, face às limitações dos antivitamínicos K, resultantes do lento início de ação farmacológica, da janela terapêutica estreita, do metabolismo variável dependente do citocromo P450, das múltiplas interações com fármacos e com alimentos e do risco potencial de complicações hemorrágicas, nos últimos anos tem-se procurado afirmar, na terapêutica anticoagulante oral, novos grupos farmacológicos capazes de superar estes problemas. Atualmente, a investigação farmacológica centra-se no desenvolvimento de novas moléculas, não peptídicas, inibidoras de instantes fulcrais do sistema de coagulação (trombina e fator Xa), com um padrão farmacodinâmico e farmacocinético previsível e consistente, administradas por via oral. Destes compostos, três(dabigatrano, rivaroxabano e apixabano) têm já indicações terapêuticas definidas (ou a definir), assentes em largos estudos de fase III de intervenção, enquanto muitos outros compostos estão em fases menos avançadas do seu desenvolvimento. Nesta revisão, sumariamos e discutimos a farmacologia da varfarina/acenocumarol e dos novos inibidores diretos da trombina e do fator Xa, objetivando semelhanças e assinalando diferenças que ajudam a fundamentar as nossas opções terapêuticas.
Resumo:
A terapêutica anticoagulante oral está em mudança. A varfarina e o acenocumarol constituem ainda o padrão anticoagulante oral em muitos contextos clínicos. Mas, face às limitações dos antivitamínicos K, resultantes do lento início de ação farmacológica, da janela terapêutica estreita, do metabolismo variável dependente do citocromo P450, das múltiplas interações com fármacos e com alimentos e do risco potencial de complicações hemorrágicas, nos últimos anos tem-se procurado afirmar, na terapêutica anticoagulante oral, novos grupos farmacológicos capazes de superar estes problemas. Atualmente, a investigação farmacológica centra-se no desenvolvimento de novas moléculas, não peptídicas, inibidoras de instantes fulcrais do sistema de coagulação (trombina e fator Xa), com um padrão farmacodinâmico e farmacocinético previsível e consistente, administradas por via oral. Destes compostos, três (dabigatrano, rivaroxabano e apixabano) têm já indicações terapêuticas definidas (ou a definir), assentes em largos estudos de fase III de intervenção, enquanto muitos outros compostos estão em fases menos avançadas do seu desenvolvimento. Nesta revisão, sumariamos e discutimos a farmacologia da varfarina/acenocumarol e dos novos inibidores diretos da trombina e do fator Xa, objetivando semelhanças e assinalando diferenças que ajudam a fundamentar as nossas opções terapêuticas.
Resumo:
The present review will briefly summarize the interplay between coagulation and inflammation, highlighting possible effects of direct inhibition of factor Xa and thrombin beyond anticoagulation. Additionally, the rationale for the use of the new direct oral anticoagulants (DOACs) for indications such as cancer-associated venous thromboembolism (CAT), mechanical heart valves, thrombotic anti-phospholipid syndrome (APS), and heparin-induced thrombocytopenia (HIT) will be explored. Published data on patients with cancer or mechanical heart valves treated with DOAC will be discussed, as well as planned studies in APS and HIT. Although at the present time published evidence is insufficient for recommending DOAC in the above-mentioned indications, there are good arguments in favor of clinical trials investigating their efficacy in these contexts. Direct inhibition of factor Xa or thrombin may reveal interesting effects beyond anticoagulation as well.
Resumo:
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.