911 resultados para Fabry–Perot cavities
Resumo:
Objective: The goal of the present study was to evaluate the microleakage on the cementum/dentin and enamel surfaces in Class II restorations, using different kinds of resin composite (microhybrid, flowable, and compactable). Method and materials: Forty human caries-free molars were extracted and selected. Eighty Class II standardized cavities were made in the cervical wall at the cementoenamel junction (CEJ) and at the mesial and distal surfaces. The teeth were divided into four groups: G1 - adhesive system + microhybrid resin composite Z100; G2 - adhesive system + compactable resin composite Prodigy Condensable; G3 - adhesive system + flowable resin composite Revolution + Z100 resin composite; G4 - adhesive system + Revolution fluid resin + compactable resin composite Prodigy Condensable. The adhesive system used in this study was Scotchbond Multi-Purpose Plus. The specimens were thermocycled in baths of 5°C and 55°C for 1,000 cycles and immersed in 50% silver nitrate solution. The specimens then were sectioned and evaluated on degree of dye penetration. Results: The results were evaluated using the nonparametric Kruskall-Wallis test, which showed a statistically significant difference between groups G1 and G4, G2 and G4, and G3 and G4. Conclusions: None of the materials was able to eliminate the marginal microleakage at the cervical wall; the application of a low-viscosity resin composite combined with a compactable resin composite significantly decreased the microleakage.
Resumo:
Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to evaluate the effect of platelet rich plasma (PRP) associated to bovine inorganic bone (Bio-Oss®; Geistlich) or bioactive glass (Bio-Gran®; Orthovita, Implant Innovations) on bone healing. Bone cavities were prepared in both sides of the mandible of 4 adult male dogs. The cavities were divided into 4 groups according to the filling material as follows: control, PRP, PRP/Bio-Oss, PRP/Bio-Gran. The animals were sacrificed after 120 days and histological and histomorphometrical analysis was performed. The control group showed 80.6% of bone formation in the longitudinal sections at 6 mm depth and 83.7% at 13 mm depth. The transverse sections displayed 74.2% at both 6 and 13 mm depths. The PRP group showed 21.1% of bone formation in the longitudinal sections at 6 mm depth, and 23.1% at 13 mm depth. The transverse sections presented 28.98% of bone formation at 6 mm depth and 41.2% at 13 mm depth. The PRP/Bio-Gran group showed 25.1% of bone formation in the longitudinal sections at 6 mm depth and 30.4% at 13 mm depth. In the transverse sections, the bone formation was 43.0% at 6 mm depth and 39.7% at 13 mm depth. The PRP/Bio-Oss group showed 35.5% of bone formation in the longitudinal sections at 6 mm depth and 42% at 13 mm depth. In the transversal sections, the bone formation was 26.8% and 31.2% at the depths of 6 and 13 mm, respectively. PRP alone or associated with bovine inorganic bone or bioglass had no significant effect in bone healing.
Resumo:
The aim of this study was to investigate whether the artificial aging by thermal cycling had influenced the marginal adaptation of class V restorations with/without chlorhexidine application in the bond process. Twelve intact human third molars were used. Class V cavity preparations were performed on the buccal surface and the teeth received 35% phosphoric acid-etching procedure (Ultradent Products Inc., South Jordan, Utah, USA). Subsequently, the samples were divided in two groups: Untreated acid-etched dentin and chlorhexidine application as an adjunct in the bond process. The adhesive Single Bond 2 (3M ESPE, St. Paul, MN, USA) was used after 2% chlorhexidine application, and the restorations were performed with FiltekTM Z350 XT (3M ESPE) composite resin. The specimens were submitted to artificial aging by thermal cycling with 3,000 cycles. Analyzes were performed on scanning electron microscopy using replicas of marginal adaptation in percentage of continuous margin before and after the artificial aging. The data were analyzed by paired test and the results showed statistically significant differences in the percentage of continuous margin with/without chlorhexidine treatment before and after thermal cycling. This study concluded that the artificial aging by thermal cycling influenced the marginal adaptation of mixed class V composite restorations.
Resumo:
The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep) surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA) and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA) (G1); Filtek Z-350 (3M/ESPE,St Paul, MN, USA) (G2); Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA) (G3); Premisa (KERR Corporation, Orange, CA, USA) (G4). Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA) + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA). After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54) or depth (p = 0.8364) of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.
Resumo:
Objectives: To determine the marginal adaptation of bulk-fill composites in class II MO cavities.Methods: Standardized class II MO cavities with bevelled enamel margins were prepared in 40 extracted human molars. The teeth were randomly assigned to one of the five experimental groups (n = 8). The teeth were restored with two horizontal increments of composite (4 mm and 2 mm thickness). The experimental groups were (1st/2nd increment): Gr. A - Venus Bulk-Fill/Venus Diamond; Gr. B - Tetric EvoCeram BulkFill/Tetric EvoCeram; Gr. C - Surefil SDR/Ceram-X; Gr. D - SonicFill; Gr. E - Ceram-X/Ceram-X (control). After finishing procedures, impressions were made using a polyvinyl siloxane and epoxy resin replicas were obtained. Thermo-mechanical stressing was carried out 24 h after the restorative procedure. All specimens were submitted to 240,000 occlusal loading and simultaneous 600 thermal cycles in water at 5 degrees C and 50 degrees C. After loading, a new set of epoxy resin replicas was obtained. Scanning electron microscopy was carried out at 200x magnification. Results for the marginal adaptation were expressed as percentages of continuity relative to the exposed interface and analyzed by ANOVA and Duncan post hoc test (p < 0.05).Results: In enamel, no significant differences were detected before and after thermo-mechanical loading between groups. In dentine, the worst results were observed in Gr. A.Conclusion: By applying simple layering techniques, bulk-fill materials do not allow better marginal adaptation than a standard composite. Clinical significance: A new class of resin-base composite (bulk-fill) was recently launched on the market. The bulk-fill composites exhibited adequate marginal adaptation and similar to the results of the standard composite. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the influence of chlorhexidine and Er, Cr:YSGG laser irradiation on the bond strength and external adaptation in mixed healthy and caries-affected class V cavities before and after thermal cycling. Thirty-six cavity preparations were made in mixed class V buccal human molars, half of them being artificially caries-induced. Any remaining affected dentin was removed from the cavity with a round burr at low speed. The teeth were divided into six groups, according to cleaning agent for both healthy and caries-induced dentin: no treatment, chlorhexidine and erbium, chromium-doped: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation. A Filtek P90 (3M ESPE, St Paul, MN, USA) silorane adhesive restorative system was used. The specimens were subjected to 5000 thermal cycles (5-55 degrees C 60 min). Epoxy replicas were obtained to characterize the external adaptation under scanning electron microscopy. The average percentages of non-continuous margins were 5.41% and 6.49% in enamel dentin before thermal cycling and 25% and 33.7% after thermal cycling, respectively. The caries-affected and laser irradiated cavities showed higher non-continuous margins. Thermal cycling was able to raise the percentage of non-continuous margin for all groups. Chlorhexidine did not affect the marginal adaptation results, and the Er,Cr:YSGG laser irradiation showed significantly worse results compared with the control group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values.
Resumo:
The Mineral Trioxide Aggregate (MTA) has excellent biological property. However, its consistency makes it difficult to be inserted into retrograde cavities. Objective:To evaluate the ability of different methods to fill retrograde cavities with MTA. Material and methods: Root canals of thirty single-rooted resin teeth were prepared and filled. After the cut of 3 mm short of apical third, retrograde cavities with 3 mm deep were prepared using an ultrasound device and retrotips (CVD, São José dos Campos, SP, Brazil). The retrograde preparation was evaluate by using an operative microscope (D.F. Vasconcellos, São Paulo, SP, Brazil). The teeth were randomly divided into three groups (n = 10), according to the method: 1) condenser (Trinity, São Paulo, SP, Brazil); 2) MTA applicator (Angelus, Londrina, Brazil) + condenser; 3) condenser associated with ultrasound (CVD, São José dos Campos, SP, Brazil). After the filling of retrograde cavities with white MTA (Angelus, Londrina, Brazil), teeth were radiographed using a digital system (Kodak RVG 6000, Rochester, NY, USA). The images were analyzed by UTHSCSA Image Tool 3.0 software. The percentage of filling was calculated by the proportion between the total area of retrograde cavity and the filled area. The radiographic density mean of each third of retrograde cavity filled with MTA was measured by using the histogram tool of the software. The results were submitted to ANOVA and Tukey tests, with 5% of significance. Results: There was no difference in percentage of filling among the groups (p > 0.05) (approximately 85%). By comparing the thirds, the condenser and MTA applicator groups showed higher density for apical and middle third than cervical third (p < 0.05). The ultrasound group presented similar density among the thirds. Conclusion: The filling ability was similar for the studied methods. Ultrasound promoted better distribution of MTA in retrograde cavity, but did not increase the density of material.
Resumo:
It is shown that the generation of cavities in a liquid can produce usable work, which is illustrated by the stretching of a string. This work is done during the expansion of the cavity, and not with its collapse. Basic equations are presented for the movement of a device moved by the so called cavity events. A theoretical solution is also proposed, which uses polynomial functions relating the so called "excess of pressure" in the cavity and time. Evaluations of the force generated during the expansion of the cavity showed a mean peak value of about 58 N for the moving container, while measurements with the container fixed to a support showed a peak value of 476 N, considered somewhat overestimated, because high frequency oscillations seem to superpose the mean behavior. Simultaneous phenomena occurring during the cavity events are also described. Series of pictures of the experiments are presented.
Resumo:
At present, solid thin films are recognized by their well established and mature processing technology that is able to produce components which, depending on their main characteristics, can perform either passive or active functions. Additionally, Si-based materials in the form of thin films perfectly match the concept of miniaturized and low-consumption devices-as required in various modern technological applications. Part of these aspects was considered in the present work that was concerned with the study of optical micro-cavities entirely based on silicon and silicon nitride thin films. The structures were prepared by the sputtering deposition method which, due to the adopted conditions (atmosphere and deposition rate) and arrangement of layers, provided cavities operating either in the visible (at ~ 670 nm) or in the near-infrared (at ~ 1560 nm) wavelength ranges. The main differential of the work relies on the construction of optical microcavities with a reduced number of periods whose main properties can be changed by thermal annealing treatments. The work also discusses the angle-dependent behavior of the optical transmission profiles as well as the use of the COMSOL software package to simulate the microcavities.
Resumo:
In the framework of developing defect-based life models, in which breakdown is explicitly associated with partial discharge (PD)-induced damage growth from a defect, ageing tests and PD measurements were carried out in the lab on polyethylene (PE) layered specimens containing artificial cavities. PD activity was monitored continuously during aging. A quasi-deterministic series of stages can be observed in the behavior of the main PD parameters (i.e. discharge repetition rate and amplitude). Phase-resolved PD patterns at various ageing stages were reproduced by numerical simulation which is based on a physical discharge model devoid of adaptive parameters. The evolution of the simulation parameters provides insight into the physical-chemical changes taking place at the dielectric/cavity interface during the aging process. PD activity shows similar time behavior under constant cavity gas volume and constant cavity gas pressure conditions, suggesting that the variation of PD parameters may not be attributed to the variation of the gas pressure. Brownish PD byproducts, consisting of oxygen containing moieties, and degradation pits were found at the dielectric/cavity interface. It is speculated that the change of PD activity is related to the composition of the cavity gas, as well as to the properties of dielectric/cavity interface.