985 resultados para FORECAST SYSTEM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15 ensemble members. The Minerva system demonstrates statistically significant skill for retrospective forecasts of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific (EP), and western North Pacific. While the highest scores overall are achieved in the North Pacific, the skill in the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model resolution improves skill scores for the ACE and, to a lesser extent, the TC frequency, even though the influence of large-scale climate variations on these TC activity measures is largely independent of resolution changes. The biggest gain occurs in transition from T319 to T639. Significant skill in regional TC forecasts is achieved over broad areas of the Northern Hemisphere. The highest-resolution hindcasts exhibit additional locations with skill in the NA and EP, including land-adjacent areas. The feasibility of regional intensity forecasts is assessed. In the presence of the coupled model biases, the benefits of high resolution for seasonal TC forecasting may be underestimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant–Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant–Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecastuncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydrometeorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trafikverket, är den statliga verksamhet som har hand om alla Sveriges vägar och järnvägar har den så kallade nollvisionen som ett huvudmål. Tanken bakom nollvisionen är att de som använder vägarna skall vara säkra och inte komma till skada. En del av uppfyllandet av detta mål är att Trafikverket ger ut korttidsprognoser för väglag och körförhållande. I nuläget så används ett mycket manuellt systemet som heter NTIS, men man håller på att utveckla det nya automatiska systemet RCC som skall kunna ta fram korttidsprognoser baserat på olika former av data, t.ex. data från väderstationer. Syftet med denna studie är att utvärdera hur väl de två olika systemen utför en korttidsprognos och jämföra de mot varandra, samt verkligheten. Denna studie gjordes i form av en förklarande fallstudie. Som datainsamling används dokument i olika former och analysen var kvantitativ då resultatet av utvärdering ger olika procenttal av hur rätt respektive system har. Under undersökningen gång så kom vi fram till att båda systemen hade sina fördelar och nackdelar. T.ex. så det gamla NTIS systemet fortfarande bäst på isigt och moddigt väglag. Medans det nya RCC systemet hade sina egna fördelar, t.ex. snöigt väglag och vått väglag. Samt så hade RCC en klar fördel med sin rapporteringstid, vilket var ett problem man såg med NTIS. Resultat var som sagt ett procenttal av hur rätt de två olika systemen hade, men även förslag till förbättringar. T.ex. hur man skulle kunna ändra RCC regler för bättre resultat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second main cause of death in Brazil is cancer, and according to statistics disclosed by National Cancer Institute from Brazil (INCA) 466,730 new cases of cancer are forecast for 2008. The analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may lead to more precise diagnoses, providing more effective treatments. In this work we present a clinical decision support system for cancer diseases, which manages a relational database containing information relating to the tumour tissue and their location in freezers, patients and medical forms. Furthermore, it is also discussed some problems encountered, as database integration and the adoption of a standard to describe topography and morphology. It is also discussed the dynamic report generation functionality, that shows data in table and graph format, according to the user's configuration. © ACM 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is the second main cause of death in Brazil, and according to statistics disclosed by INCA - National Cancer Institute 466,730 new cases of the disease are forecast for 2008. The storage and analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may provide more precise diagnoses, providing more effective treatments with higher chances for the cure of cancer. In this paper we present a Web system with a client-server architecture, which manages a relational database containing all information relating to the tumour tissue and their location in freezers, patients, medical forms, physicians, users, and others. Furthermore, it is also discussed the software engineering used to developing the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1986, the U.S. Environmental Protection Agency (EPA) initiated an effort to comply more fully with the Endangered Species Act. This effort became their "Endangered Species Protection Program." The possibility of such a program was forecast in 1982 when Donald A. Spencer gave a presentation to the Tenth Vertebrate Pest Conference on "Vertebrate Pest Management and Changing Times." This paper focuses on current plans for implementing the EPA's Endangered Species Protection Program as it relates to the USDA Forest Service. It analyzes the potential effects this program will have on the agency, using the pocket gopher (Thomomys spp.), strychnine, and the grizzly bear (Ursus arctos horribilis) as examples of an affected pest, pesticide, and predator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade, scientific studies have indicated an association between air pollution to which people are exposed and wide range of adverse health outcomes. We have developed a tool which is based on a model (MM5-CMAQ) running over Europe with 50 km spatial resolution, based on EMEP annual emissions, to produce a short-term forecast of the impact on health. In order to estimate the mortality change (forecasted for the next 24 hours) we have chosen a log-linear (Poisson) regression form to estimate the concentration-response function. The parameters involved in the C-R function have been estimated based on epidemiological studies, which have been published. Finally, we have derived the relationship between concentration change and mortality change from the C-R function which is the final health impact function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests.