99 resultados para FLUOROPHORES
Resumo:
The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.
Resumo:
We have developed a semi-synthetic approach for preparing long stretches of DNA (>100 bp) containing internal chemical modifications and/or non-Watson–Crick structural motifs which relies on splint-free, cell-free DNA ligations and recycling of side-products by non-PCR thermal cycling. A double-stranded DNA PCR fragment containing a polylinker in its middle is digested with two restriction enzymes and a small insert (∼20 bp) containing the modification or non-Watson–Crick motif of interest is introduced into the middle. Incorrect products are recycled to starting materials by digestion with appropriate restriction enzymes, while the correct product is resistant to digestion since it does not contain these restriction sites. This semi-synthetic approach offers several advantages over DNA splint-mediated ligations, including fewer steps, substantially higher yields (∼60% overall yield) and ease of use. This method has numerous potential applications, including the introduction of modifications such as fluorophores and cross-linking agents into DNA, controlling the shape of DNA on a large scale and the study of non-sequence-specific nucleic acid–protein interactions.
Resumo:
The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH2 or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2–4 s sooner with the COOH-terminally labeled molecules than with the NH2-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.
Resumo:
Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.
Resumo:
Intrinsic, three-dimensionally resolved, microscopic imaging of dynamical structures and biochemical processes in living preparations has been realized by nonlinear laser scanning fluorescence microscopy. The search for useful two-photon and three-photon excitation spectra, motivated by the emergence of nonlinear microscopy as a powerful biophysical instrument, has now discovered a virtual artist's palette of chemical indicators, fluorescent markers, and native biological fluorophores, including NADH, flavins, and green fluorescent proteins, that are applicable to living biological preparations. More than 25 two-photon excitation spectra of ultraviolet and visible absorbing molecules reveal useful cross sections, some conveniently blue-shifted, for near-infrared absorption. Measurements of three-photon fluorophore excitation spectra now define alternative windows at relatively benign wavelengths to excite deeper ultraviolet fluorophores. The inherent optical sectioning capability of nonlinear excitation provides three-dimensional resolution for imaging and avoids out-of-focus background and photodamage. Here, the measured nonlinear excitation spectra and their photophysical characteristics that empower nonlinear laser microscopy for biological imaging are described.
Resumo:
We extend the sensitivity of fluorescence resonance energy transfer (FRET) to the single molecule level by measuring energy transfer between a single donor fluorophore and a single acceptor fluorophore. Near-field scanning optical microscopy (NSOM) is used to obtain simultaneous dual color images and emission spectra from donor and acceptor fluorophores linked by a short DNA molecule. Photodestruction dynamics of the donor or acceptor are used to determine the presence and efficiency of energy transfer. The classical equations used to measure energy transfer on ensembles of fluorophores are modified for single-molecule measurements. In contrast to ensemble measurements, dynamic events on a molecular scale are observable in single pair FRET measurements because they are not canceled out by random averaging. Monitoring conformational changes, such as rotations and distance changes on a nanometer scale, within single biological macromolecules, may be possible with single pair FRET.
Resumo:
O desenvolvimento de técnicas analíticas, espectroscópicas e de imagem baseadas na detecção da fluorescência está associado com a necessidade por marcadores fluorescentes com variadas características e aplicabilidades. Dentre os diversos marcadores fluorescentes disponíveis, os derivados de borodipirrometenos (BODIPY), descobertos no final da década de 1960, passaram a ser amplamente utilizados desde o final da década de 1980. Esta tese de doutorado se trata de um estudo pioneiro no Brasil, envolvendo a síntese, modificação química e caracterização fotofísica de BODIPYs. Na primeira etapa do projeto métodos de obtenção de BODIPYs foram estabelecidos e aplicados na síntese de uma biblioteca de sondas fluorescentes. O estudo fotofísico dessa biblioteca de fluoróforos nos possibilitou identificar e estudar particularidades de alguns fluoróforos, como o solvatocromismo, halocromismo e ionocromismo. A segunda etapa do projeto envolveu o estabelecimento de métodos de modificação química de BODIPYs visando a diversificação fotofísica e estrutural da biblioteca de compostos. Foram sintetizados BODIPYs reativos que foram submetidos a reações de substituição nucleofílica, Suzuki, Sonogashira, Knoevenagel e arilação direta, levando à obtenção de compostos com propriedades ópticas diversas. Por fim, na terceira etapa do projeto, está descrito o desenvolvimento de novos métodos de modificação química de fluoróforos BODIPY. Foi desenvolvido um método simples de tiocianação direta dessa classe de compostos com bons rendimentos, baseado na utilização de tiocianato de amônio e oxone ®. O escopo e as limitações do novo método de tiocianação foi estudado em BODIPYs com propriedades eletrônicas diversas. Foi mostrada ainda a conversão de BODIPYs tiocianados a derivados tioalquilados com características ópticas particulares. Em conclusão, com esta tese de doutorado foi estabelecida uma linha de pesquisa inovadora envolvendo a síntese e modificação química de uma classe de compostos com ampla aplicação tecnológica.
Resumo:
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTPinduced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.
Resumo:
Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.
Resumo:
Molecularly imprinted polymers (MIPs) are crosslinked polymers containing bespoke functionalised cavities arising from the inclusion of template molecules in the polymerisation mixture and their later extraction. When the polymers are prepared functional polymerisable monomers are included which become part of the polymer matrix and serve to decorate the cavities with functionality appropriate to the template molecules. Overall, binding sites are created which have a memory for the template both in terms of shape and matching functionality. Fluorescent molecularly imprinted polymers have the benefit of a fluorophore in their cavities that may respond to the presence of bound test compound by a change in their fluorescence output. The work presented falls into three main areas. A series of fluorescent MIPs was prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. The MIPs re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One MIP in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from the drug set tested. In order to give some insights into binding modes in MIPs, attempts were made to produce functional monomers containing two or more fluorophores that could be interrogated independently. A model compound was prepared which fitted the dual-fluorophore criteria and which will be the basis for future incorporation into MIPs. A further strand to this thesis is the deliberate incorporation of hydrophobic moieties into fluorescent functional monomers so that the resulting imprinted cavities might be biomimetic in their impersonation of enzyme active sites. Thus the imprinted cavities had specific hydrophobic regions as well as the usual polar functionality with which to interact with binding test compounds.
Resumo:
This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.
Resumo:
The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.
Resumo:
Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.
Resumo:
Muscle invasive urinary bladder cancer is one of the most lethal cancers and its detection at the time of transurethral resection remains limited and diagnostic methods are urgently needed. We have developed a muscle invasive transitional cell carcinoma (TCC) model of the bladder using porcine bladder scaffold and the human bladder cancer cell line 5637. The progression of implanted cancer cells to muscle invasion can be monitored by measuring changes in the spectrum of endogenous fluorophores such as reduced nicotinamide dinucleotide (NADH) and flavins. We believe this could act as a useful tool for the study of fluorescence dynamics of developing muscle invasive bladder cancer in patients.
Resumo:
Dissolved organic matter (DOM) is one of the largest carbon reservoirs on this planet and is present in aquatic environments as a highly complex mixture of organic compounds. The Florida coastal Everglades (FCE) is one of the largest wetlands in the world. DOM in this system is an important biogeochemical component as most of the nitrogen (N) and phosphorous (P) are in organic forms. Achieving a better understanding of DOM dynamics in large coastal wetlands is critical, and a particularly important issue in the context of Everglades restoration. In this work, the environmental dynamics of surface water DOM on spatial and temporal scales was investigated. In addition, photo- and bio-reactivity of this DOM was determined, surface-to-groundwater exchange of DOM was investigated, and the size distribution of freshwater DOM in Everglades was assessed. The data show that DOM dynamics in this ecosystem are controlled by both hydrological and ecological drivers and are clearly different on spatial scales and variable seasonally. The DOM reactivity data, modeled with a multi-pool first order degradation kinetics model, found that fluorescent DOM in FCE is generally photo-reactive and bio-refractory. Yet the sequential degradation proved a “priming effect” of sunlight on the bacterial uptake and reworking of this subtropical wetland DOM. Interestingly, specific PARAFAC components were found to have different photo- and bio-degradation rates, suggesting a highly heterogeneous nature of fluorophores associated with the DOM. Surface-to-groundwater exchange of DOM was observed in different regions of the system, and compositional differences were associated with source and photo-reactivity. Lastly, the high degree of heterogeneity of DOM associated fluorophores suggested based on the degradation studies was confirmed through the EEM-PARAFAC analysis of DOM along a molecular size continuum, suggesting that the fluorescence characteristics of DOM are highly controlled by different size fractions and as such can exhibit significant differences in reactivity.